\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behaviour for a class of delayed cooperative models with patch structure

Abstract / Introduction Related Papers Cited by
  • For a class of cooperative population models with patch structure and multiple discrete delays, we give conditions for the absolute global asymptotic stability of both the trivial solution and -- when it exists -- a positive equilibrium. Under a sublinearity condition, sharper results are obtained. The existence of positive heteroclinic solutions connecting the two equilibria is also addressed. As a by-product, we obtain a criterion for the existence of positive traveling wave solutions for an associated reaction-diffusion model with patch structure. Our results improve and generalize criteria in the recent literature.
    Mathematics Subject Classification: Primary: 34K20; Secondary: 34K25, 35C07, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Faria, Global asymptotic behaviour for a Nicholson model with patch structure and multiple delays, Nonlinear Anal., 74 (2011), 7033-7046.doi: 10.1016/j.na.2011.07.024.

    [2]

    T. Faria and J. J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks, J. Differential Equations, 244 (2008), 1049-1079.doi: 10.1016/j.jde.2007.12.005.

    [3]

    T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay, Nonlinearity, 23 (2010), 2457-2481.doi: 10.1088/0951-7715/23/10/006.

    [4]

    M. Fiedler, "Special Matrices and Their Applications in Numerical Mathematics," Martinus Nijhoff Publ., Dordrecht, 1986.doi: 10.1007/978-94-009-4335-3.

    [5]

    B. Liu, Global stability of a class of delay differential systems, J. Comput. Appl. Math., 233 (2009), 217-223.doi: 10.1016/j.cam.2009.07.024.

    [6]

    H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, Amer. Math. Soc., Providence, RI, 1995.

    [7]

    H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition," Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511530043.

    [8]

    Y. Takeuchi, J. Cui, R. Miyazaki and Y. Saito, Permanence of delayed population model with dispersal loss, Math. Biosci., 201 (2006), 143-156.doi: 10.1016/j.mbs.2005.12.012.

    [9]

    Y. Takeuchi, W. Wang and Y. Saito, Global stability of population models with patch structure, Nonlinear Anal. Real World Appl., 7 (2006), 235-247.doi: 10.1016/j.nonrwa.2005.02.005.

    [10]

    W. Wang, P. Fergola and C. Tenneriello, Global attractivity of periodic solutions of population models, J. Math. Anal. Appl., 211 (1997), 498-511.doi: 10.1006/jmaa.1997.5484.

    [11]

    X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Cann. Appl. Math. Quart., 4 (1996), 421-444.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(3081) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return