August  2013, 18(6): 1567-1579. doi: 10.3934/dcdsb.2013.18.1567

Asymptotic behaviour for a class of delayed cooperative models with patch structure

1. 

Departamento de Matemática and CMAF, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

Received  September 2011 Revised  January 2012 Published  March 2013

For a class of cooperative population models with patch structure and multiple discrete delays, we give conditions for the absolute global asymptotic stability of both the trivial solution and -- when it exists -- a positive equilibrium. Under a sublinearity condition, sharper results are obtained. The existence of positive heteroclinic solutions connecting the two equilibria is also addressed. As a by-product, we obtain a criterion for the existence of positive traveling wave solutions for an associated reaction-diffusion model with patch structure. Our results improve and generalize criteria in the recent literature.
Citation: Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1567-1579. doi: 10.3934/dcdsb.2013.18.1567
References:
[1]

Nonlinear Anal., 74 (2011), 7033-7046. doi: 10.1016/j.na.2011.07.024.  Google Scholar

[2]

J. Differential Equations, 244 (2008), 1049-1079. doi: 10.1016/j.jde.2007.12.005.  Google Scholar

[3]

Nonlinearity, 23 (2010), 2457-2481. doi: 10.1088/0951-7715/23/10/006.  Google Scholar

[4]

Martinus Nijhoff Publ., Dordrecht, 1986. doi: 10.1007/978-94-009-4335-3.  Google Scholar

[5]

J. Comput. Appl. Math., 233 (2009), 217-223. doi: 10.1016/j.cam.2009.07.024.  Google Scholar

[6]

Mathematical Surveys and Monographs, 41, Amer. Math. Soc., Providence, RI, 1995.  Google Scholar

[7]

Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[8]

Math. Biosci., 201 (2006), 143-156. doi: 10.1016/j.mbs.2005.12.012.  Google Scholar

[9]

Nonlinear Anal. Real World Appl., 7 (2006), 235-247. doi: 10.1016/j.nonrwa.2005.02.005.  Google Scholar

[10]

J. Math. Anal. Appl., 211 (1997), 498-511. doi: 10.1006/jmaa.1997.5484.  Google Scholar

[11]

Cann. Appl. Math. Quart., 4 (1996), 421-444.  Google Scholar

show all references

References:
[1]

Nonlinear Anal., 74 (2011), 7033-7046. doi: 10.1016/j.na.2011.07.024.  Google Scholar

[2]

J. Differential Equations, 244 (2008), 1049-1079. doi: 10.1016/j.jde.2007.12.005.  Google Scholar

[3]

Nonlinearity, 23 (2010), 2457-2481. doi: 10.1088/0951-7715/23/10/006.  Google Scholar

[4]

Martinus Nijhoff Publ., Dordrecht, 1986. doi: 10.1007/978-94-009-4335-3.  Google Scholar

[5]

J. Comput. Appl. Math., 233 (2009), 217-223. doi: 10.1016/j.cam.2009.07.024.  Google Scholar

[6]

Mathematical Surveys and Monographs, 41, Amer. Math. Soc., Providence, RI, 1995.  Google Scholar

[7]

Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[8]

Math. Biosci., 201 (2006), 143-156. doi: 10.1016/j.mbs.2005.12.012.  Google Scholar

[9]

Nonlinear Anal. Real World Appl., 7 (2006), 235-247. doi: 10.1016/j.nonrwa.2005.02.005.  Google Scholar

[10]

J. Math. Anal. Appl., 211 (1997), 498-511. doi: 10.1006/jmaa.1997.5484.  Google Scholar

[11]

Cann. Appl. Math. Quart., 4 (1996), 421-444.  Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[3]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[4]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[5]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[6]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[7]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[8]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[9]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[10]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[14]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[15]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[16]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[17]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[18]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (2984)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]