August  2013, 18(6): 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay

1. 

Institut für Mathematik, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany

2. 

Institut für Stochastik, Friedrich Schiller Universität Jena, Ernst Abbe Platz 2, 07737 Jena, Germany

Received  January 2012 Revised  March 2012 Published  March 2013

In this paper we deal with a nonautonomous differential equation with a nonautonomous delay. The aim is to establish the existence of an unstable invariant manifold to this differential equation for which we use the Lyapunov-Perron transformation. However, the delay is assumed to be unbounded which makes it necessary to use nonclassical methods.
Citation: Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663
References:
[1]

Ludwig Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).  doi: 10.1007/BFb0095238.  Google Scholar

[2]

Tomás Caraballo, Jinqiao Duan, Kening Lu and Björn Schmalfuß, Invariant manifolds for random and stochastic partial differential equations,, Adv. Nonlinear Stud., 10 (2010), 23.   Google Scholar

[3]

Tomás Caraballo, María J. Garrido-Atienza, Björn Schmalfuß and José Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Contin. Dyn. Syst., 21 (2008), 415.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[4]

Tomás Caraballo, Peter E. Kloeden and José Real, Discretization of asymptotically stable stationary solutions of delay differential equations with a random stationary delay,, J. Dynam. Differential Equations, 18 (2006), 863.  doi: 10.1007/s10884-006-9022-5.  Google Scholar

[5]

Carmen Chicone and Yuri Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical Surveys and Monographs, 70 (1999).   Google Scholar

[6]

Igor D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems,", AKTA, (2002).   Google Scholar

[7]

Igor D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dynam. Differential Equations, 13 (2001), 355.  doi: 10.1023/A:1016684108862.  Google Scholar

[8]

Thai S. Doan and Stefan Siegmund, Differential equations with random delay,, Infinite dimensional dynamical systems., ().   Google Scholar

[9]

María J. Garrido-Atienza, Kening Lu and Björn Schmalfuß, Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion,, J. Differential Equations, 248 (2010), 1637.  doi: 10.1016/j.jde.2009.11.006.  Google Scholar

[10]

María J. Garrido-Atienza, Arne Ogrowsky and Björn Schmalfuß, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369.  doi: 10.1142/S0219493711003358.  Google Scholar

[11]

Salah-Eldin A. Mohammed, Tusheng Zhang and Huaizhong Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations,, Mem. Amer. Math. Soc., 196 (2008).   Google Scholar

show all references

References:
[1]

Ludwig Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).  doi: 10.1007/BFb0095238.  Google Scholar

[2]

Tomás Caraballo, Jinqiao Duan, Kening Lu and Björn Schmalfuß, Invariant manifolds for random and stochastic partial differential equations,, Adv. Nonlinear Stud., 10 (2010), 23.   Google Scholar

[3]

Tomás Caraballo, María J. Garrido-Atienza, Björn Schmalfuß and José Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Contin. Dyn. Syst., 21 (2008), 415.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[4]

Tomás Caraballo, Peter E. Kloeden and José Real, Discretization of asymptotically stable stationary solutions of delay differential equations with a random stationary delay,, J. Dynam. Differential Equations, 18 (2006), 863.  doi: 10.1007/s10884-006-9022-5.  Google Scholar

[5]

Carmen Chicone and Yuri Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations,", Mathematical Surveys and Monographs, 70 (1999).   Google Scholar

[6]

Igor D. Chueshov, "Introduction to the Theory of Infinite-Dimensional Dissipative Systems,", AKTA, (2002).   Google Scholar

[7]

Igor D. Chueshov and M. Scheutzow, Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations,, J. Dynam. Differential Equations, 13 (2001), 355.  doi: 10.1023/A:1016684108862.  Google Scholar

[8]

Thai S. Doan and Stefan Siegmund, Differential equations with random delay,, Infinite dimensional dynamical systems., ().   Google Scholar

[9]

María J. Garrido-Atienza, Kening Lu and Björn Schmalfuß, Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion,, J. Differential Equations, 248 (2010), 1637.  doi: 10.1016/j.jde.2009.11.006.  Google Scholar

[10]

María J. Garrido-Atienza, Arne Ogrowsky and Björn Schmalfuß, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369.  doi: 10.1142/S0219493711003358.  Google Scholar

[11]

Salah-Eldin A. Mohammed, Tusheng Zhang and Huaizhong Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations,, Mem. Amer. Math. Soc., 196 (2008).   Google Scholar

[1]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[2]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[3]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[4]

Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021020

[5]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[6]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[7]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[8]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[9]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[10]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[11]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[12]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[15]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[16]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[17]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[18]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[19]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]