August  2013, 18(6): 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

Exponential growth rate for a singular linear stochastic delay differential equation

1. 

Institut für Mathematik, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin

Received  January 2012 Revised  March 2012 Published  March 2013

We establish the existence of a deterministic exponential growth rate for the norm (on an appropriate function space) of the solution of the linear scalar stochastic delay equation $d X(t) = X(t-1) d W(t)$ which does not depend on the initial condition as long as it is not identically zero. Due to the singular nature of the equation this property does not follow from available results on stochastic delay differential equations. The key technique is to establish existence and uniqueness of an invariant measure of the projection of the solution onto the unit sphere in the chosen function space via asymptotic coupling and to prove a Furstenberg-Hasminskii-type formula (like in the finite dimensional case).
Citation: Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683
References:
[1]

L. Arnold, W. Kliemann and E. Oeljeklaus, Lyapunov exponents for linear stochastic systems,, in, 1186 (1986), 85. doi: 10.1007/BFb0076836. Google Scholar

[2]

G. Da Prato and J. Zabczyk, "Ergodicity for Infinite Dimensional Systems,", London Mathematical Society Lecture Note Series, 229 (1996). doi: 10.1017/CBO9780511662829. Google Scholar

[3]

H. Furstenberg, Noncommuting random products,, Trans. Amer. Math. Soc., 108 (1963), 377. Google Scholar

[4]

M. Hairer, J. Mattingly and M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations,, Prob. Theory Rel. Fields, 149 (2011), 223. doi: 10.1007/s00440-009-0250-6. Google Scholar

[5]

P. Hall and C. Heyde, "Martingale Limit Theory and its Application,", Probability and Mathematical Statistics, (1980). Google Scholar

[6]

R. Z. Has'minskiĭ, Necessary and sufficient conditions for asymptotic stability of linear stochastic systems,, Theory Probability Appl., 12 (1967), 144. Google Scholar

[7]

R. S. Liptser and A. N. Shiryayev, "Statistics of Random Processes. I. General Theory,", Translated by A. B. Aries, (1977). Google Scholar

[8]

S. Mohammed, Nonlinear flows of stochastic linear delay equations,, Stochastics, 17 (1986), 207. doi: 10.1080/17442508608833390. Google Scholar

[9]

S. Mohammed and M. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. I. The multiplicative ergodic theory,, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 69. Google Scholar

[10]

S. Mohammed and M. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. II. Examples and case studies,, Ann. Probab., 25 (1997), 1210. doi: 10.1214/aop/1024404511. Google Scholar

[11]

M. Scheutzow, Exponential growth rates for stochastic delay differential equations,, Stoch. Dyn., 5 (2005), 163. doi: 10.1142/S0219493705001468. Google Scholar

show all references

References:
[1]

L. Arnold, W. Kliemann and E. Oeljeklaus, Lyapunov exponents for linear stochastic systems,, in, 1186 (1986), 85. doi: 10.1007/BFb0076836. Google Scholar

[2]

G. Da Prato and J. Zabczyk, "Ergodicity for Infinite Dimensional Systems,", London Mathematical Society Lecture Note Series, 229 (1996). doi: 10.1017/CBO9780511662829. Google Scholar

[3]

H. Furstenberg, Noncommuting random products,, Trans. Amer. Math. Soc., 108 (1963), 377. Google Scholar

[4]

M. Hairer, J. Mattingly and M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations,, Prob. Theory Rel. Fields, 149 (2011), 223. doi: 10.1007/s00440-009-0250-6. Google Scholar

[5]

P. Hall and C. Heyde, "Martingale Limit Theory and its Application,", Probability and Mathematical Statistics, (1980). Google Scholar

[6]

R. Z. Has'minskiĭ, Necessary and sufficient conditions for asymptotic stability of linear stochastic systems,, Theory Probability Appl., 12 (1967), 144. Google Scholar

[7]

R. S. Liptser and A. N. Shiryayev, "Statistics of Random Processes. I. General Theory,", Translated by A. B. Aries, (1977). Google Scholar

[8]

S. Mohammed, Nonlinear flows of stochastic linear delay equations,, Stochastics, 17 (1986), 207. doi: 10.1080/17442508608833390. Google Scholar

[9]

S. Mohammed and M. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. I. The multiplicative ergodic theory,, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 69. Google Scholar

[10]

S. Mohammed and M. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. II. Examples and case studies,, Ann. Probab., 25 (1997), 1210. doi: 10.1214/aop/1024404511. Google Scholar

[11]

M. Scheutzow, Exponential growth rates for stochastic delay differential equations,, Stoch. Dyn., 5 (2005), 163. doi: 10.1142/S0219493705001468. Google Scholar

[1]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[2]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[3]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[4]

Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Asymptotic behaviour for operators of Grushin type: Invariant measure and singular perturbations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 119-128. doi: 10.3934/dcdss.2019008

[5]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[6]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[7]

Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II. Electronic Research Announcements, 2001, 7: 28-36.

[8]

Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electronic Research Announcements, 2001, 7: 17-27.

[9]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[10]

Federica Sani. A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth. Communications on Pure & Applied Analysis, 2013, 12 (1) : 405-428. doi: 10.3934/cpaa.2013.12.405

[11]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic & Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

[12]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[13]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[14]

Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735

[15]

Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071

[16]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[17]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[18]

Mostafa Adimy, Fabien Crauste. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 19-38. doi: 10.3934/dcdsb.2007.8.19

[19]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[20]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]