
Previous Article
Meansquare random attractors of stochastic delay differential equations with random delay
 DCDSB Home
 This Issue

Next Article
Exponential growth rate for a singular linear stochastic delay differential equation
Khasminskiitype theorems for stochastic functional differential equations
1.  Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China 
2.  Department of Applied Mathematics, Donghua Univerisity, Shanghai 201600, China 
3.  Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH 
4.  School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China 
References:
[1] 
A. Bahar and X. Mao, Stochastic delay LotkaVolterra model,, J. Math. Anal. Appl., 292 (2004), 364. doi: 10.1016/j.jmaa.2003.12.004. Google Scholar 
[2] 
A. Bahar and X. Mao, Stochastic delay population dynamics,, International J. Pure and Applied Math., 11 (2004), 377. Google Scholar 
[3] 
T. C. Gard, "Introduction to Stochastic Differential Equations,", Monographs and Textbooks in Pure and Applied Mathematics, 114 (1988). Google Scholar 
[4] 
R. Z. Has'minskiĭ, "Stochastic Stability of Differential Equations,", Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7 (1980). Google Scholar 
[5] 
V. Kolmanovskiĭ and A. Myshkis, "Applied Theory of FunctionalDifferential Equations,", Mathematics and its Applications (Soviet Series), 85 (1992). Google Scholar 
[6] 
G. S. Ladde and V. Lakshmikantham, "Random Differential Inequalities,", Mathematics in Science and Engineering, 150 (1980). Google Scholar 
[7] 
M. Loève, "Probability Theory,", Third edition, (1963). Google Scholar 
[8] 
Q. Luo, X. Mao and Y. Shen, Generalised theory on asymptotic stability and boundedness of stochastic functional differential equations,, Automatica J. IFAC, 47 (2011), 2075. doi: 10.1016/j.automatica.2011.06.014. Google Scholar 
[9] 
X. Mao, "Stability of Stochastic Differential Equations with Respect to Semimartingales,", Pitman Research Notes in Mathematics Series, 251 (1991). Google Scholar 
[10] 
X. Mao, "Exponential Stability of Stochastic Differential Equations,", Monographs and Textbooks in Pure and Applied Mathematics, 182 (1994). Google Scholar 
[11] 
X. Mao, "Stochastic Differential Equations and Applications,", Second edition, (2008). Google Scholar 
[12] 
X. Mao, A note on the LaSalletype theorems for stochastic differential delay equations,, J. Math. Anal. Appl., 268 (2002), 125. doi: 10.1006/jmaa.2001.7803. Google Scholar 
[13] 
X. Mao and M. J. Rassias, Khasminskiitype theorems for stochastic differential delay equations,, J. Sto. Anal. Appl., 23 (2005), 1045. doi: 10.1080/07362990500118637. Google Scholar 
[14] 
X. Mao and C. Yuan, "Stochastic Differential Equations with Markovian Switching,", Imperial College Press, (2006). Google Scholar 
[15] 
X. Mao, C. Yuan and J. Zou, Stochastic differential delay equations in population dynamics,, J. Math. Anal. Appl., 304 (2005), 296. doi: 10.1016/j.jmaa.2004.09.027. Google Scholar 
[16] 
S. E. A. Mohammed, "Stochastic Functional Differential Equations,", Research Notes in Mathematics, 99 (1984). Google Scholar 
show all references
References:
[1] 
A. Bahar and X. Mao, Stochastic delay LotkaVolterra model,, J. Math. Anal. Appl., 292 (2004), 364. doi: 10.1016/j.jmaa.2003.12.004. Google Scholar 
[2] 
A. Bahar and X. Mao, Stochastic delay population dynamics,, International J. Pure and Applied Math., 11 (2004), 377. Google Scholar 
[3] 
T. C. Gard, "Introduction to Stochastic Differential Equations,", Monographs and Textbooks in Pure and Applied Mathematics, 114 (1988). Google Scholar 
[4] 
R. Z. Has'minskiĭ, "Stochastic Stability of Differential Equations,", Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7 (1980). Google Scholar 
[5] 
V. Kolmanovskiĭ and A. Myshkis, "Applied Theory of FunctionalDifferential Equations,", Mathematics and its Applications (Soviet Series), 85 (1992). Google Scholar 
[6] 
G. S. Ladde and V. Lakshmikantham, "Random Differential Inequalities,", Mathematics in Science and Engineering, 150 (1980). Google Scholar 
[7] 
M. Loève, "Probability Theory,", Third edition, (1963). Google Scholar 
[8] 
Q. Luo, X. Mao and Y. Shen, Generalised theory on asymptotic stability and boundedness of stochastic functional differential equations,, Automatica J. IFAC, 47 (2011), 2075. doi: 10.1016/j.automatica.2011.06.014. Google Scholar 
[9] 
X. Mao, "Stability of Stochastic Differential Equations with Respect to Semimartingales,", Pitman Research Notes in Mathematics Series, 251 (1991). Google Scholar 
[10] 
X. Mao, "Exponential Stability of Stochastic Differential Equations,", Monographs and Textbooks in Pure and Applied Mathematics, 182 (1994). Google Scholar 
[11] 
X. Mao, "Stochastic Differential Equations and Applications,", Second edition, (2008). Google Scholar 
[12] 
X. Mao, A note on the LaSalletype theorems for stochastic differential delay equations,, J. Math. Anal. Appl., 268 (2002), 125. doi: 10.1006/jmaa.2001.7803. Google Scholar 
[13] 
X. Mao and M. J. Rassias, Khasminskiitype theorems for stochastic differential delay equations,, J. Sto. Anal. Appl., 23 (2005), 1045. doi: 10.1080/07362990500118637. Google Scholar 
[14] 
X. Mao and C. Yuan, "Stochastic Differential Equations with Markovian Switching,", Imperial College Press, (2006). Google Scholar 
[15] 
X. Mao, C. Yuan and J. Zou, Stochastic differential delay equations in population dynamics,, J. Math. Anal. Appl., 304 (2005), 296. doi: 10.1016/j.jmaa.2004.09.027. Google Scholar 
[16] 
S. E. A. Mohammed, "Stochastic Functional Differential Equations,", Research Notes in Mathematics, 99 (1984). Google Scholar 
[1] 
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 281293. doi: 10.3934/dcdsb.2015.20.281 
[2] 
Henryk Leszczyński, Monika Wrzosek. Newton's method for nonlinear stochastic wave equations driven by onedimensional Brownian motion. Mathematical Biosciences & Engineering, 2017, 14 (1) : 237248. doi: 10.3934/mbe.2017015 
[3] 
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2010, 14 (2) : 473493. doi: 10.3934/dcdsb.2010.14.473 
[4] 
Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 21572169. doi: 10.3934/dcdsb.2015.20.2157 
[5] 
Shaokuan Chen, Shanjian Tang. Semilinear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401434. doi: 10.3934/mcrf.2015.5.401 
[6] 
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with noninstantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2017, 22 (7) : 25212541. doi: 10.3934/dcdsb.2017084 
[7] 
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of pth mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2019213 
[8] 
Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhintype technique and stability of the EulerMaruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems  A, 2013, 33 (2) : 885903. doi: 10.3934/dcds.2013.33.885 
[9] 
Fuke Wu, Shigeng Hu. The LaSalletype theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems  A, 2012, 32 (3) : 10651094. doi: 10.3934/dcds.2012.32.1065 
[10] 
Ya Wang, Fuke Wu, Xuerong Mao, Enwen Zhu. Advances in the LaSalletype theorems for stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 287300. doi: 10.3934/dcdsb.2019182 
[11] 
Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 615635. doi: 10.3934/dcdsb.2018199 
[12] 
Haiyan Zhang. A necessary condition for meanfield type stochastic differential equations with correlated state and observation noises. Journal of Industrial & Management Optimization, 2016, 12 (4) : 12871301. doi: 10.3934/jimo.2016.12.1287 
[13] 
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems  A, 2009, 24 (3) : 10051023. doi: 10.3934/dcds.2009.24.1005 
[14] 
Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2019220 
[15] 
Guolian Wang, Boling Guo. Stochastic Kortewegde Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 52555272. doi: 10.3934/dcds.2015.35.5255 
[16] 
Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2014, 19 (4) : 11971212. doi: 10.3934/dcdsb.2014.19.1197 
[17] 
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slowfast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (7) : 22572267. doi: 10.3934/dcdsb.2015.20.2257 
[18] 
Tyrone E. Duncan. Some linearquadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 54355445. doi: 10.3934/dcds.2015.35.5435 
[19] 
Xijun Hu, Penghui Wang. Hilltype formula and Kreintype trace formula for $S$periodic solutions in ODEs. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 763784. doi: 10.3934/dcds.2016.36.763 
[20] 
Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and MackeyGlass models). Discrete & Continuous Dynamical Systems  A, 2018, 38 (9) : 43914419. doi: 10.3934/dcds.2018191 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]