September  2013, 18(7): 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

Attractivity for neutral functional differential equations

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom

Received  February 2013 Revised  March 2013 Published  May 2013

We study the long term dynamics of non-autonomous functional differential equations. Namely, we establish existence results on pullback attractors for non-linear neutral functional differential equations with time varying delays. The two main results differ in smoothness properties of delay functions.
Citation: Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793
References:
[1]

T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delay,, Discrete Contin. Dyn. Syst., 33 (2013), 1365.  doi: 10.3934/dcds.2013.33.1365.  Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Analysis, 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[4]

Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays,, J. Math. Anal. Appl., 260 (2001), 421.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[5]

T. Caraballo, J. Real and T. Taniguchi, The exponential stability of neutral stochastic delay partial differential equations,, Discrete Contin. Dyn. Syst., 18 (2007), 295.  doi: 10.3934/dcds.2007.18.295.  Google Scholar

[6]

H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays,, Statist. Probab. Lett., 80 (2010), 50.  doi: 10.1016/j.spl.2009.09.011.  Google Scholar

[7]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[8]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", \textbf{99} of Applied Mathematical Sciences. Springer-Verlag, 99 (1993).   Google Scholar

[9]

G. Kiss and B. Krauskopf, Stability implications of delay distribution for first-order and second-order systems,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327.  doi: 10.3934/dcdsb.2010.13.327.  Google Scholar

[10]

G. Kiss and B. Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback,, Dynamical Systems: An International Journal, 26 (2011), 85.  doi: 10.1080/14689367.2010.523889.  Google Scholar

[11]

G. Kiss and J.-P. Lessard, Computational fixed point theory for differential delay equations with multiple time lags,, Journal of Differential Equations, 252 (2012), 3093.  doi: 10.1016/j.jde.2011.11.020.  Google Scholar

[12]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems,, Stoch. Dyn., 3 (2003), 101.  doi: 10.1142/S0219493703000632.  Google Scholar

[13]

P. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems,", Mathematical Surveys and Monographs, 176 (2011).   Google Scholar

[14]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", \textbf{191} of Mathematics in Science and Engineering. Academic Press Inc., 191 (1993).   Google Scholar

[15]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956.  doi: 10.1016/j.na.2009.02.065.  Google Scholar

[16]

R. D. Nussbaum, Functional differential equations,, in, 2 (2002), 461.  doi: 10.1016/S1874-575X(02)80031-5.  Google Scholar

[17]

M. Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems,", \textbf{1907} of Lecture Notes in Mathematics. Springer, 1907 (2007).  doi: 10.1007/978-3-540-71225-1.  Google Scholar

[18]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in, (1992), 185.   Google Scholar

[19]

G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory,, Trans. Amer. Math. Soc., 127 (1967), 241.   Google Scholar

[20]

G. R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations,, Trans. Amer. Math. Soc., 127 (1967), 263.  doi: 10.1090/S0002-9947-1967-0212314-4.  Google Scholar

[21]

H. O. Walther, Dynamics of delay differential equations,, in, 205 (2006), 411.  doi: 10.1007/1-4020-3647-7_10.  Google Scholar

[22]

J. Wu, H. Xia and B. Zhang, Topological transversality and periodic solutions of neutral functional-differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 199.  doi: 10.1017/S0308210500027530.  Google Scholar

show all references

References:
[1]

T. Caraballo and G. Kiss, Attractors for differential equations with multiple variable delay,, Discrete Contin. Dyn. Syst., 33 (2013), 1365.  doi: 10.3934/dcds.2013.33.1365.  Google Scholar

[2]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Analysis, 64 (2006), 484.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[4]

Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays,, J. Math. Anal. Appl., 260 (2001), 421.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[5]

T. Caraballo, J. Real and T. Taniguchi, The exponential stability of neutral stochastic delay partial differential equations,, Discrete Contin. Dyn. Syst., 18 (2007), 295.  doi: 10.3934/dcds.2007.18.295.  Google Scholar

[6]

H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays,, Statist. Probab. Lett., 80 (2010), 50.  doi: 10.1016/j.spl.2009.09.011.  Google Scholar

[7]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[8]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", \textbf{99} of Applied Mathematical Sciences. Springer-Verlag, 99 (1993).   Google Scholar

[9]

G. Kiss and B. Krauskopf, Stability implications of delay distribution for first-order and second-order systems,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327.  doi: 10.3934/dcdsb.2010.13.327.  Google Scholar

[10]

G. Kiss and B. Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback,, Dynamical Systems: An International Journal, 26 (2011), 85.  doi: 10.1080/14689367.2010.523889.  Google Scholar

[11]

G. Kiss and J.-P. Lessard, Computational fixed point theory for differential delay equations with multiple time lags,, Journal of Differential Equations, 252 (2012), 3093.  doi: 10.1016/j.jde.2011.11.020.  Google Scholar

[12]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems,, Stoch. Dyn., 3 (2003), 101.  doi: 10.1142/S0219493703000632.  Google Scholar

[13]

P. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems,", Mathematical Surveys and Monographs, 176 (2011).   Google Scholar

[14]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", \textbf{191} of Mathematics in Science and Engineering. Academic Press Inc., 191 (1993).   Google Scholar

[15]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956.  doi: 10.1016/j.na.2009.02.065.  Google Scholar

[16]

R. D. Nussbaum, Functional differential equations,, in, 2 (2002), 461.  doi: 10.1016/S1874-575X(02)80031-5.  Google Scholar

[17]

M. Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems,", \textbf{1907} of Lecture Notes in Mathematics. Springer, 1907 (2007).  doi: 10.1007/978-3-540-71225-1.  Google Scholar

[18]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in, (1992), 185.   Google Scholar

[19]

G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory,, Trans. Amer. Math. Soc., 127 (1967), 241.   Google Scholar

[20]

G. R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations,, Trans. Amer. Math. Soc., 127 (1967), 263.  doi: 10.1090/S0002-9947-1967-0212314-4.  Google Scholar

[21]

H. O. Walther, Dynamics of delay differential equations,, in, 205 (2006), 411.  doi: 10.1007/1-4020-3647-7_10.  Google Scholar

[22]

J. Wu, H. Xia and B. Zhang, Topological transversality and periodic solutions of neutral functional-differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 199.  doi: 10.1017/S0308210500027530.  Google Scholar

[1]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[16]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[17]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[18]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]