September  2013, 18(7): 1805-1825. doi: 10.3934/dcdsb.2013.18.1805

Effects of white noise in multistable dynamics

1. 

School of Mathematical Sciences, Shanxi University, Taiyuan, 030006, China, China

2. 

Division of Applied Mathematics, Brown University, Providence, RI 02912, United States

3. 

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006

Received  January 2013 Revised  April 2013 Published  May 2013

We study the invariant measure of multistable dynamics under the influence of white noise. We show that the invariant measure exists and in the limit of vanishing white noise, the invariant measure approaches a Dirac type measure concentrated at the most stable equilibria if fluctuations are uniform; however, a lesser stable equilibrium may be selected by the fluctuation if its ability to fluctuate is sufficiently smaller than other stable equilibria. Certain related mathematical issues are also addressed.
Citation: Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805
References:
[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Mettal., 27 (1979), 1085-1095. doi: 10.1016/0001-6160(79)90196-2.

[2]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commu. Partial Differ. Equ., 26 (2001), 43-100. doi: 10.1081/PDE-100002246.

[3]

A. R. Bulsara, W. C. Schieve and R. F. Gragg, Phase transitions induced by white noise in bistable optical systems, Physics Letters A, 168 (1978), 294-296. doi: 10.1016/0375-9601(78)90508-X.

[4]

S. Brassesco, A. De Masi and E. Presutti, Brownian fluctuations of the interface in the $D=1$ Ginzburg-Landau equation with noise, Ann. Inst. H. Poincaré Probab. Statist., 31 (1995), 81-118.

[5]

H. H. Chang, P. Oh, D. E. Ingber and S. Huang, Multistable and multistep dynamics in neutrophil differentiation, MBC Cell Biology, 7 (2006), 11.

[6]

S. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional on Markov process on a graph, Arch. Rational Mech. Anal., 203 (2012), 969-1008. doi: 10.1007/s00205-011-0471-6.

[7]

G. Da Prato and J. Zabczyk, "Ergodicity for Infinite-Dimensional Systems," London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridye, 1996. doi: 10.1017/CBO9780511662829.

[8]

M. Erbar, Low noise limit for the invariant measure of a multi-dimensional stochastic Allen-Cahn equation,, \arXiv{1012.2718}., (). 

[9]

T. Funaki, Singular limit for stochastic reaction-diffusion equation nd generation of random interface, Acta. Math. Sin. (Engl. Ser.), 15 (1999), 407-438. doi: 10.1007/BF02650735.

[10]

T. Funaki, The scaling limit for a stochastic PDE and the separation of phases, Probab. Theory Ralated Fields, 102 (1995), 221-288. doi: 10.1007/BF01213390.

[11]

I. Fatkullin and E. Vanden-Eijnden, "Coarsening by Diffusion-Annihilation in a Bistable System Driven by Noise,", 2003. Available from: \url{http://www.cims.nyu.edu/~eve2/gl.pdf}., (). 

[12]

A. Friedman, "Generalized Functions and Partial Differential Equations," Prentice-Hall, Englewood Cliffs, NJ, 1963.

[13]

C. W. Gardiner, "Handbooks of Stochastic Methods in Physics, Chemistry, and Nautral Sciences," Springer-Verlag, Berlin, 1983.

[14]

M. A. Katsoulakis, G. Kossioris and O. Lakkis, Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem, Interfaces and Free Boundaries, 9 (2007), 1-30. doi: 10.4171/IFB/154.

[15]

S. Kogan, "Electronic Noise and Fluctuations in Solids," Cambridge University Press, 1996. doi: 10.1017/CBO9780511551666.

[16]

D. Liu, Convergence of the spectral method for stochastic Ginzburh-Landau equation driven by space-times white noise, Comm. Math. Sci., 1 (2003), 361-375.

[17]

P. L. Lions and P. Souganidis, Fully nonlinear stochastic partial differential equations: Nonsmooth equations and applications, C. R. Acad. Sci. paris Ser. I Math., 326 (1998), 1085-1092. doi: 10.1016/S0764-4442(98)80067-0.

[18]

P. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis, Math. Contemp., 19 (2000), 1-29.

[19]

J. M. Porrá and J. Masoliver, Bistability driven by white shot noise, Phys. Rev. E, 47 (1993), 1633-1641. doi: 10.1103/PhysRevE.47.1633.

[20]

J. M. Porrá, J. Masoliver and K. Lindenberg, Bistability driven by dichotomous noise, Phys. Rev., 44 (1991), 4866-4875. doi: 10.1103/PhysRevA.44.4866.

[21]

M. G. Reznikoff and G. Vanden-Eijnden, Invariant measures of stochastic partial differential equations and conditioned diffusions, C. R. Math. Acda. Sci. Paris, 340 (2005), 305-308. doi: 10.1016/j.crma.2004.12.025.

[22]

D. Ryter, Conditions for Gibbs-type solutions of Stationary Fokker-Planck equations, J. Phys. A, 18 (1985), 1111-1117. doi: 10.1088/0305-4470/18/7/019.

[23]

L. Schimansky-Geier and C. Zülick, Harmonic noise: effect on bistable systems, Z. Phys. B-Condensed Matter, 79 (1990), 451-460. doi: 10.1007/BF01437657.

[24]

L. Schimansky-Geier, J. J. Hesse and C. Zülick, Harmonic noise driven bistable dynamics, Berichte der Bunsengesellschaft für physikalischei Chemie, 95 (1991), 349-352. doi: 10.1002/bbpc.19910950321.

[25]

Z. Schuss, "Theory and Applications of Stochastic Processes, An Analytical Approach," Springer, New York, 2010. doi: 10.1007/978-1-4419-1605-1.

[26]

J. M. R. de Rueda, G. G. Izús and C. H. Borzi, Critical slowing down on the dynamics of a bistable reaction-diffusion system in the neighborhood of its critical point, J. Stats. Phys., 97 (1999), 803-809.

[27]

H. Weber, On the short time asymptotic of stochatic Allen-Cahn equation, Ann. Inst. H. Poincar\`e Probab. Stat., 46 (2010), 965-975. doi: 10.1214/09-AIHP333.

[28]

H. Weber, Sharp interface limit for invariant measures of a stochastic Allen-Cahn equation, Comm. Pure Appl. Math., 63 (2010), 1071-1109. doi: 10.1002/cpa.20323.

[29]

W. Weidlich and H. Grabert, Renormalied transport equations for the bistable potential model, Z. Physik B, 36 (1980), 283-293. doi: 10.1007/BF01325292.

[30]

N. Yip, Stochastic motion by mean curvature, Arch. Rational. Mech. Anal., 144 (1998), 313-355. doi: 10.1007/s002050050120.

[31]

F. H. Xiao, G. R. Yan and X. W. Zhang, Effect of signal modulating noise in bistable stochastic dynamical systems, Chinese Phys., 12 (2003), 946-950.

[32]

L. Zhang, L. Cao and D. Wu, Effect of correlated noises in an optical bistable system, Physical Review A, 77 (2008), [4 pages]. doi: 10.1103/PhysRevA.77.015801.

show all references

References:
[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Mettal., 27 (1979), 1085-1095. doi: 10.1016/0001-6160(79)90196-2.

[2]

A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commu. Partial Differ. Equ., 26 (2001), 43-100. doi: 10.1081/PDE-100002246.

[3]

A. R. Bulsara, W. C. Schieve and R. F. Gragg, Phase transitions induced by white noise in bistable optical systems, Physics Letters A, 168 (1978), 294-296. doi: 10.1016/0375-9601(78)90508-X.

[4]

S. Brassesco, A. De Masi and E. Presutti, Brownian fluctuations of the interface in the $D=1$ Ginzburg-Landau equation with noise, Ann. Inst. H. Poincaré Probab. Statist., 31 (1995), 81-118.

[5]

H. H. Chang, P. Oh, D. E. Ingber and S. Huang, Multistable and multistep dynamics in neutrophil differentiation, MBC Cell Biology, 7 (2006), 11.

[6]

S. Chow, W. Huang, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional on Markov process on a graph, Arch. Rational Mech. Anal., 203 (2012), 969-1008. doi: 10.1007/s00205-011-0471-6.

[7]

G. Da Prato and J. Zabczyk, "Ergodicity for Infinite-Dimensional Systems," London Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cambridye, 1996. doi: 10.1017/CBO9780511662829.

[8]

M. Erbar, Low noise limit for the invariant measure of a multi-dimensional stochastic Allen-Cahn equation,, \arXiv{1012.2718}., (). 

[9]

T. Funaki, Singular limit for stochastic reaction-diffusion equation nd generation of random interface, Acta. Math. Sin. (Engl. Ser.), 15 (1999), 407-438. doi: 10.1007/BF02650735.

[10]

T. Funaki, The scaling limit for a stochastic PDE and the separation of phases, Probab. Theory Ralated Fields, 102 (1995), 221-288. doi: 10.1007/BF01213390.

[11]

I. Fatkullin and E. Vanden-Eijnden, "Coarsening by Diffusion-Annihilation in a Bistable System Driven by Noise,", 2003. Available from: \url{http://www.cims.nyu.edu/~eve2/gl.pdf}., (). 

[12]

A. Friedman, "Generalized Functions and Partial Differential Equations," Prentice-Hall, Englewood Cliffs, NJ, 1963.

[13]

C. W. Gardiner, "Handbooks of Stochastic Methods in Physics, Chemistry, and Nautral Sciences," Springer-Verlag, Berlin, 1983.

[14]

M. A. Katsoulakis, G. Kossioris and O. Lakkis, Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem, Interfaces and Free Boundaries, 9 (2007), 1-30. doi: 10.4171/IFB/154.

[15]

S. Kogan, "Electronic Noise and Fluctuations in Solids," Cambridge University Press, 1996. doi: 10.1017/CBO9780511551666.

[16]

D. Liu, Convergence of the spectral method for stochastic Ginzburh-Landau equation driven by space-times white noise, Comm. Math. Sci., 1 (2003), 361-375.

[17]

P. L. Lions and P. Souganidis, Fully nonlinear stochastic partial differential equations: Nonsmooth equations and applications, C. R. Acad. Sci. paris Ser. I Math., 326 (1998), 1085-1092. doi: 10.1016/S0764-4442(98)80067-0.

[18]

P. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis, Math. Contemp., 19 (2000), 1-29.

[19]

J. M. Porrá and J. Masoliver, Bistability driven by white shot noise, Phys. Rev. E, 47 (1993), 1633-1641. doi: 10.1103/PhysRevE.47.1633.

[20]

J. M. Porrá, J. Masoliver and K. Lindenberg, Bistability driven by dichotomous noise, Phys. Rev., 44 (1991), 4866-4875. doi: 10.1103/PhysRevA.44.4866.

[21]

M. G. Reznikoff and G. Vanden-Eijnden, Invariant measures of stochastic partial differential equations and conditioned diffusions, C. R. Math. Acda. Sci. Paris, 340 (2005), 305-308. doi: 10.1016/j.crma.2004.12.025.

[22]

D. Ryter, Conditions for Gibbs-type solutions of Stationary Fokker-Planck equations, J. Phys. A, 18 (1985), 1111-1117. doi: 10.1088/0305-4470/18/7/019.

[23]

L. Schimansky-Geier and C. Zülick, Harmonic noise: effect on bistable systems, Z. Phys. B-Condensed Matter, 79 (1990), 451-460. doi: 10.1007/BF01437657.

[24]

L. Schimansky-Geier, J. J. Hesse and C. Zülick, Harmonic noise driven bistable dynamics, Berichte der Bunsengesellschaft für physikalischei Chemie, 95 (1991), 349-352. doi: 10.1002/bbpc.19910950321.

[25]

Z. Schuss, "Theory and Applications of Stochastic Processes, An Analytical Approach," Springer, New York, 2010. doi: 10.1007/978-1-4419-1605-1.

[26]

J. M. R. de Rueda, G. G. Izús and C. H. Borzi, Critical slowing down on the dynamics of a bistable reaction-diffusion system in the neighborhood of its critical point, J. Stats. Phys., 97 (1999), 803-809.

[27]

H. Weber, On the short time asymptotic of stochatic Allen-Cahn equation, Ann. Inst. H. Poincar\`e Probab. Stat., 46 (2010), 965-975. doi: 10.1214/09-AIHP333.

[28]

H. Weber, Sharp interface limit for invariant measures of a stochastic Allen-Cahn equation, Comm. Pure Appl. Math., 63 (2010), 1071-1109. doi: 10.1002/cpa.20323.

[29]

W. Weidlich and H. Grabert, Renormalied transport equations for the bistable potential model, Z. Physik B, 36 (1980), 283-293. doi: 10.1007/BF01325292.

[30]

N. Yip, Stochastic motion by mean curvature, Arch. Rational. Mech. Anal., 144 (1998), 313-355. doi: 10.1007/s002050050120.

[31]

F. H. Xiao, G. R. Yan and X. W. Zhang, Effect of signal modulating noise in bistable stochastic dynamical systems, Chinese Phys., 12 (2003), 946-950.

[32]

L. Zhang, L. Cao and D. Wu, Effect of correlated noises in an optical bistable system, Physical Review A, 77 (2008), [4 pages]. doi: 10.1103/PhysRevA.77.015801.

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[3]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[6]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[7]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[8]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[9]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[10]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[11]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[12]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[13]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[14]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[15]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic and Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[16]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013

[17]

Anton Arnold, Beatrice Signorello. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022009

[18]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[19]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[20]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (1)

[Back to Top]