Citation: |
[1] |
S. Ahn, "Transient and Attractor Dynamics in Models for Odor Discrimination," Ph.D. thesis, Ohio State University, 2010. |
[2] |
S. Ahn and W. Just, Digraphs vs. dynamics in discrete models of neuronal networks, Discrete and Continuous Dynamical Systems Series B (DCDS-B), 17 (2012), 1365-1381.doi: 10.3934/dcdsb.2012.17.1365. |
[3] |
S. Ahn, B. H. Smith, A. Borisyuk and D. Terman, Analyzing neuronal networks using discrete-time dynamics, Physica D: Nonlinear Phenomena, 239 (2010), 515-528.doi: 10.1016/j.physd.2009.12.011. |
[4] |
J. Bang-Jensen and G. Z. Gutin, "Digraphs. Theory, Algorithms and Applications," Second edition, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2009.doi: 10.1007/978-1-84800-998-1. |
[5] |
E. Behrends, "Introduction to Markov Chains. With Special Emphasis on Rapid Mixing," Friedr. Vieweg & Sohn, Braunschweig, 2000. |
[6] |
O. Colón-Reyes, R. Laubenbacher and B. Pareigis, Boolean monomial dynamical systems, Annals of Combinatorics, 8 (2005), 425-439.doi: 10.1007/s00026-004-0230-6. |
[7] |
R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," Reprint of the second (1989) edition, Studies in Nonlinearity, Westview Press, Boulder, CO, 2003. |
[8] |
R. Durrett, "Random Graph Dynamics," Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2010. |
[9] |
C. Espinosa-Soto, P. Padilla-Longoria and E. R. Alvarez-Buylla, A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles, The Plant Cell Online, 16 (2004), 2923-2939.doi: 10.1105/tpc.104.021725. |
[10] |
E. Goles and S. Martínez, "Neural and automata Networks. Dynamical Behavior and Applications," Kluwer Academic Publishers Group, Dordrecht, 1990.doi: 10.1007/978-94-009-0529-0. |
[11] |
E. Goles and M. Matamala, Reaction-diffusion automata: Three states implies universality, Theory of Computing Systems, 30 (1997), 223-229.doi: 10.1007/BF02679460. |
[12] |
E. Goles, F. Fogelman-Soulié and D. Pellegrin, Decreasing energy functions as a tool for studying threshold networks, Discrete Applied Mathematics, 12 (1985), 261-277.doi: 10.1016/0166-218X(85)90029-0. |
[13] |
G. Grimmett, "Probability on Graphs. Random Processes on Graphs and Lattices," Institute of Mathematical Statistics Textbooks, 1, Cambridge University Press, Cambridge, 2010. |
[14] |
W. Just, S. Ahn and D. Terman, Minimal attractors in digraph system models of neuronal networks, Physica D, 237 (2008), 3186-3196.doi: 10.1016/j.physd.2008.08.011. |
[15] |
S. A. Kauffman, "The Origins of Order: Self-Organization and Selection in Evolution," Oxford University Press, New York, 1993. |
[16] |
T. Luczak and J. E. Cohen, Stability of vertices in random Boolean cellular automata, Random Structures & Algorithms, 2 (1991), 327-334.doi: 10.1002/rsa.3240020307. |
[17] |
J. F. Lynch, Dynamics of random Boolean networks, in "Current Developments in Mathematical Biology," Ser. Knots Everything, 38, World Scientific Publ., Hackensack, NJ, (2007), 15-38.doi: 10.1142/9789812706799_0002. |
[18] |
M. Matamala and E. Goles, Dynamic behavior of cyclic automata networks, Discrete Applied Mathematics, 77 (1997), 161-184.doi: 10.1016/S0166-218X(97)84104-2. |
[19] |
W. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biology, 5 (1943), 115-133.doi: 10.1007/BF02478259. |