Citation: |
[1] |
S. Aida, S. Kusuoka and D. Strook, On the support of Wiener functionals, in "Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotic" (eds. K. D. Elworthy, N. Ikeda), Longman Scient. Tech., (1993), 3-34. |
[2] |
R. M. Anderson and R. M. May, "Infectious Diseases of Humans," Oxford University Press, Oxford, 1992. |
[3] |
R. M. Anderson and R. M. May, Population biology of infectious diseases, part I, Nature, 280 (1979), 361-367.doi: 10.1038/280361a0. |
[4] |
G. B. Arous and R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Relat. Fields, 90 (1991), 377-402.doi: 10.1007/BF01193751. |
[5] |
D. R. Bell, "The Malliavin Calculus," Dover publications, New York, 2006. |
[6] |
E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47 (2001), 4107-4115.doi: 10.1016/S0362-546X(01)00528-4. |
[7] |
N. M. Ferguson, D. J. Nokes and R. M. Anderson, Dynamical complexity in age-structured models of the transmission of measles virus, Math. BioSci., 138 (1996), 101-130.doi: 10.1016/S0025-5564(96)00127-7. |
[8] |
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902.doi: 10.1137/10081856X. |
[9] |
B. T. Grenfell, B. M. Bolker and A. Kleczkowski, Seasonality and extinction in chaotic metapopulations, Proc. Roy. Soc. Lond. B, 259 (1995), 97-103.doi: 10.1098/rspb.1995.0015. |
[10] |
H. B. Guo, M. Y. Li and Z. S. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284. |
[11] |
D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.doi: 10.1137/S0036144500378302. |
[12] |
C. Y. Ji, D. Q. Jiang and N. Z. Shi, Multigroup SIR epidemic model with stochastic perturbation, Physica A, 390 (2011), 1747-1762. |
[13] |
C. Y. Ji, D. Q. Jiang, Q. S. Yang and N. Z. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121-131.doi: 10.1016/j.automatica.2011.09.044. |
[14] |
M. J. Keeling and B. T. Grenfell, Disease extinction and community size: modeling the persistence of measles, Science, 275 (1997), 65-67.doi: 10.1126/science.275.5296.65. |
[15] |
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics (part I), Proc. R. Soc. Lond. Ser. A, 115 (1927), 700-721. |
[16] |
M. Y. Li and Z. S. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Differential Equations, 248 (2010), 1-20.doi: 10.1016/j.jde.2009.09.003. |
[17] |
R. M. May and R. M. Anderson, Population biology of infectious diseases, part II, Nature, 280 (1979), 455-461.doi: 10.1038/280455a0. |
[18] |
X. Z. Meng and L. S. Chen, The dynamics of a new SIR epidemic model concerning pulse vaccination strategy, Appl. Math. Comput., 197 (2008), 528-597.doi: 10.1016/j.amc.2007.07.083. |
[19] |
D. Mollison, V. Isham and B. Grenfell, Epidemics: Models and data, J. Roy. Stat. Soc. A, 157 (1994), 115-149.doi: 10.2307/2983509. |
[20] |
K. Pichór and R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997), 56-74.doi: 10.1006/jmaa.1997.5609. |
[21] |
P. Rohani, D. J. D. Earn and B. T. Grenfell, Opposite patterns of synchrony: In sympatric disease metapopulations, Science, 286 (1999), 968-971.doi: 10.1126/science.286.5441.968. |
[22] |
M. Roy and R. D. Holt, Effects of predation on host-pathogen dynamics in SIR models, Theor. Popul. Biol., 73 (2008), 319-331.doi: 10.1016/j.tpb.2007.12.008. |
[23] |
R. Rudnicki, Long-time behaviour of a stochastic prey-predator model, Stochastic Process. Appl., 108 (2003), 93-107.doi: 10.1016/S0304-4149(03)00090-5. |
[24] |
R. Rudnicki and K. Pichór, Influence of stochastic perturbation on prey-predator systems, Math. Biosci., 206 (2007), 108-119.doi: 10.1016/j.mbs.2006.03.006. |
[25] |
D. W. Stroock and S. R. S. Varadhan, On the support of diffusion processes with applications to the strong maximum principle, in "Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. III," University of California Press, Berkeley, (1972), 333-359. |
[26] |
J. M. Tchuenche, A. Nwagwo and R. Levins, Global behaviour of an SIR epidemic model with time delay, Math. Methods Appl. Sci., 30 (2007), 733-749.doi: 10.1002/mma.810. |
[27] |
E. Tornatore, S. M. Buccellato and P. Vetro, Stability of a stochastic SIR system, Physica A, 354 (2005), 111-126.doi: 10.1016/j.physa.2005.02.057. |
[28] |
F. P. Zhang, Z. Z. Li and F. Zhang, Global stability of an SIR epidemic model with constant infectious period, Appl. Math. Comput., 199 (2008), 285-291.doi: 10.1016/j.amc.2007.09.053. |