September  2013, 18(7): 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

A mathematical model for control of vector borne diseases through media campaigns

1. 

Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221 005, India, India

2. 

Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899

Received  June 2012 Revised  October 2012 Published  May 2013

Vector borne diseases spread rapidly in the population. Hence their control intervention must work quickly and target large area as well. A rational approach to combat these diseases is mobilizing people and making them aware through media campaigns. In the present paper, a non-linear mathematical model is proposed to assess the impact of creating awareness by the media on the spread of vector borne diseases. It is assumed that as a response to awareness, people will not only try to protect themselves but also take some potential steps to inhibit growth of vectors in the environment. The model is analyzed using stability theory of differential equations and numerical simulation. The equilibria and invasion threshold for infection i.e., basic reproduction number, has been obtained. It is found that the presence of awareness in the population makes the disease invasion difficult. Also, continuous efforts by the media along with the swift dissemination of awareness can completely eradicate the disease from the system.
Citation: A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909
References:
[1]

A. A. Adedotun, O. A. Morenikeji and A. B. Odaibo, Knowledge, attitudes and practices about malaria in an urban community in south-western Nigeria, J. Vector Borne Dis., 47 (2010), 155-159.

[2]

K. Blayneh, Y. Cao and H-D. Kwon, Optimal control of vector-borne diseases: Treatment and prevention, Discrete Contin. Dyn. Syst., Ser. B, 11 (2009), 587-611. doi: 10.3934/dcdsb.2009.11.587.

[3]

O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873-885. doi: 10.1098/rsif.2009.0386.

[4]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-thershold endemic equalibria for compartmental models of disease transmission, Math Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[5]

N. Ferguson, Capturing human behaviour, Nature, 446 (2007). doi: 10.1038/446733a.

[6]

S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. USA, 106 (2009), 6872-6877. doi: 10.1073/pnas.0810762106.

[7]

S. Funk, E. Gilad and V. A. A. Jansen, Endemic disease, awareness, and local behavioural response, J. Theor. Biol., 264 (2010), 501-509. doi: 10.1016/j.jtbi.2010.02.032.

[8]

S. Funk, M. Salathé and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247-256. doi: 10.1098/rsif.2010.0142.

[9]

Health and Environment Linkages Initiative(HELI), [online document], Available from: \url{http://www.who.int/heli/risks/vectors/vector/en/index.html}., (). 

[10]

G. R. Hosack, P. A. Rossignol and P. van den Driessche, The control of vector-borne disease epidemics, J. Theor. Biol., 255 (2008), 16-25. doi: 10.1016/j.jtbi.2008.07.033.

[11]

H. H. Hyman and P. B. Sheatsley, Some reasons why information campaigns fail, Pub. Opin. Quart., 11 (1947), 412-423.

[12]

H. Joshi, S. Lenhart, K. Albright and K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math Biosci. and Engg., 5 (2008), 757-770. doi: 10.3934/mbe.2008.5.757.

[13]

M. J. Keeling and P. Rohani, "Modeling Infectious Diseases in Humans and Animals," Princeton University Press, New Jersey, 2008.

[14]

I. Z. Kiss, J. Cassell, M. Recker and P. L. Simon, The impact of information transmission on epidemic outbreaks, Math Biosci., 255 (2010), 1-10. doi: 10.1016/j.mbs.2009.11.009.

[15]

J. Li, Effects of behavior change on the spread of AIDS epidemic, Math Comput. Model, 16 (1992), 103-111. doi: 10.1016/0895-7177(92)90155-E.

[16]

J. Li, A malaria model with partial immunity in humans, Math Biosci. Engg., 5 (2008), 789-801. doi: 10.3934/mbe.2008.5.789.

[17]

R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math Methods Med., 8 (2007), 153-164. doi: 10.1080/17486700701425870.

[18]

Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65-74. doi: 10.1142/S1793524508000023.

[19]

P. M. Luz, C. J. Struchiner and A. P. Galvani, Modeling transmission dynamics and control of vector- borne neglected tropical diseases, PLoS. Negl. Trop. Dis., 4 (2010), e761. doi: 10.1371/journal.pntd.0000761.

[20]

Z. Ma and Jia Li, "Dynamical Modeling and Analysis of Epidemics," World Scientific, Singapore, 2009. doi: 10.1142/9789812797506.

[21]

G. Macdonald, "The Epidemiology and Control of Malaria," Oxford University Press, London, 1957.

[22]

Malaria comic book from Chillibreeze, [online document], Available from: \url{http://www.chillibreeze.com/ebooks/malaria.asp}., (). 

[23]

A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221-1228. doi: 10.1016/j.mcm.2010.12.005.

[24]

A. K. Misra, A. Sharma and V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay, J. Biol. Sys., 19 (2011), 389-402. doi: 10.1142/S0218339011004020.

[25]

G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations, Discrete Contin. Dyn. Syst., Ser. B, 4 (2004), 1173-1202. doi: 10.3934/dcdsb.2004.4.1173.

[26]

T. C. Nchinda, Malaria: A reemerging disease in Africa, Emerg. Infect Dis., 4 (1998), 398-403. doi: 10.3201/eid0403.980313.

[27]

R. Ross, "The Prevention of Malaria," 2nd edition, Murray, London, 1911.

[28]

V. P. Sharma, Re-emergence of malaria in India, Indian J. Med. Res., 103 (1996), 26-45.

[29]

P. Tyagi, A. Roy and M. S. Malhotra, Knowledge, awareness and practices towards malaria in communities of rural, semi-rural and bordering areas of east Delhi (India), J. Vect. Borne. Dis., 42 (2005), 30-35.

[30]

WHO chikungunya factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs327/en/index.html}., (). 

[31]

WHO Dengue factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs117/en/index.html}., (). 

[32]

WHO Malaria factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs094/en/index.html}., (). 

[33]

WHO Yellow fever factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs100/en/index.html}., (). 

show all references

References:
[1]

A. A. Adedotun, O. A. Morenikeji and A. B. Odaibo, Knowledge, attitudes and practices about malaria in an urban community in south-western Nigeria, J. Vector Borne Dis., 47 (2010), 155-159.

[2]

K. Blayneh, Y. Cao and H-D. Kwon, Optimal control of vector-borne diseases: Treatment and prevention, Discrete Contin. Dyn. Syst., Ser. B, 11 (2009), 587-611. doi: 10.3934/dcdsb.2009.11.587.

[3]

O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873-885. doi: 10.1098/rsif.2009.0386.

[4]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-thershold endemic equalibria for compartmental models of disease transmission, Math Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[5]

N. Ferguson, Capturing human behaviour, Nature, 446 (2007). doi: 10.1038/446733a.

[6]

S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. USA, 106 (2009), 6872-6877. doi: 10.1073/pnas.0810762106.

[7]

S. Funk, E. Gilad and V. A. A. Jansen, Endemic disease, awareness, and local behavioural response, J. Theor. Biol., 264 (2010), 501-509. doi: 10.1016/j.jtbi.2010.02.032.

[8]

S. Funk, M. Salathé and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247-256. doi: 10.1098/rsif.2010.0142.

[9]

Health and Environment Linkages Initiative(HELI), [online document], Available from: \url{http://www.who.int/heli/risks/vectors/vector/en/index.html}., (). 

[10]

G. R. Hosack, P. A. Rossignol and P. van den Driessche, The control of vector-borne disease epidemics, J. Theor. Biol., 255 (2008), 16-25. doi: 10.1016/j.jtbi.2008.07.033.

[11]

H. H. Hyman and P. B. Sheatsley, Some reasons why information campaigns fail, Pub. Opin. Quart., 11 (1947), 412-423.

[12]

H. Joshi, S. Lenhart, K. Albright and K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math Biosci. and Engg., 5 (2008), 757-770. doi: 10.3934/mbe.2008.5.757.

[13]

M. J. Keeling and P. Rohani, "Modeling Infectious Diseases in Humans and Animals," Princeton University Press, New Jersey, 2008.

[14]

I. Z. Kiss, J. Cassell, M. Recker and P. L. Simon, The impact of information transmission on epidemic outbreaks, Math Biosci., 255 (2010), 1-10. doi: 10.1016/j.mbs.2009.11.009.

[15]

J. Li, Effects of behavior change on the spread of AIDS epidemic, Math Comput. Model, 16 (1992), 103-111. doi: 10.1016/0895-7177(92)90155-E.

[16]

J. Li, A malaria model with partial immunity in humans, Math Biosci. Engg., 5 (2008), 789-801. doi: 10.3934/mbe.2008.5.789.

[17]

R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math Methods Med., 8 (2007), 153-164. doi: 10.1080/17486700701425870.

[18]

Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65-74. doi: 10.1142/S1793524508000023.

[19]

P. M. Luz, C. J. Struchiner and A. P. Galvani, Modeling transmission dynamics and control of vector- borne neglected tropical diseases, PLoS. Negl. Trop. Dis., 4 (2010), e761. doi: 10.1371/journal.pntd.0000761.

[20]

Z. Ma and Jia Li, "Dynamical Modeling and Analysis of Epidemics," World Scientific, Singapore, 2009. doi: 10.1142/9789812797506.

[21]

G. Macdonald, "The Epidemiology and Control of Malaria," Oxford University Press, London, 1957.

[22]

Malaria comic book from Chillibreeze, [online document], Available from: \url{http://www.chillibreeze.com/ebooks/malaria.asp}., (). 

[23]

A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221-1228. doi: 10.1016/j.mcm.2010.12.005.

[24]

A. K. Misra, A. Sharma and V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay, J. Biol. Sys., 19 (2011), 389-402. doi: 10.1142/S0218339011004020.

[25]

G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations, Discrete Contin. Dyn. Syst., Ser. B, 4 (2004), 1173-1202. doi: 10.3934/dcdsb.2004.4.1173.

[26]

T. C. Nchinda, Malaria: A reemerging disease in Africa, Emerg. Infect Dis., 4 (1998), 398-403. doi: 10.3201/eid0403.980313.

[27]

R. Ross, "The Prevention of Malaria," 2nd edition, Murray, London, 1911.

[28]

V. P. Sharma, Re-emergence of malaria in India, Indian J. Med. Res., 103 (1996), 26-45.

[29]

P. Tyagi, A. Roy and M. S. Malhotra, Knowledge, awareness and practices towards malaria in communities of rural, semi-rural and bordering areas of east Delhi (India), J. Vect. Borne. Dis., 42 (2005), 30-35.

[30]

WHO chikungunya factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs327/en/index.html}., (). 

[31]

WHO Dengue factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs117/en/index.html}., (). 

[32]

WHO Malaria factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs094/en/index.html}., (). 

[33]

WHO Yellow fever factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs100/en/index.html}., (). 

[1]

Derdei Mahamat Bichara. Effects of migration on vector-borne diseases with forward and backward stage progression. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6297-6323. doi: 10.3934/dcdsb.2019140

[2]

Xinli Hu, Yansheng Liu, Jianhong Wu. Culling structured hosts to eradicate vector-borne diseases. Mathematical Biosciences & Engineering, 2009, 6 (2) : 301-319. doi: 10.3934/mbe.2009.6.301

[3]

Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587

[4]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[5]

Riane Hajjami, Mustapha El Jarroudi, Aadil Lahrouz, Adel Settati, Mohamed EL Fatini, Kai Wang. Dynamic analysis of an $ SEIR $ epidemic model with a time lag in awareness allocated funds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4191-4225. doi: 10.3934/dcdsb.2020285

[6]

Hem Joshi, Suzanne Lenhart, Kendra Albright, Kevin Gipson. Modeling the effect of information campaigns on the HIV epidemic in Uganda. Mathematical Biosciences & Engineering, 2008, 5 (4) : 757-770. doi: 10.3934/mbe.2008.5.757

[7]

Tomás Caraballo, Mohamed El Fatini, Roger Pettersson, Regragui Taki. A stochastic SIRI epidemic model with relapse and media coverage. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3483-3501. doi: 10.3934/dcdsb.2018250

[8]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[9]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[10]

Xianyun Chen, Daozhou Gao. Effects of travel frequency on the persistence of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4677-4701. doi: 10.3934/dcdsb.2020119

[11]

Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134

[12]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[13]

Yanzhao Cao, Dawit Denu. Analysis of stochastic vector-host epidemic model with direct transmission. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2109-2127. doi: 10.3934/dcdsb.2016039

[14]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[15]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[16]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[17]

Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1447-1469. doi: 10.3934/dcdsb.2021097

[18]

Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5171-5196. doi: 10.3934/dcdsb.2020338

[19]

Arvind Kumar Misra, Rajanish Kumar Rai, Yasuhiro Takeuchi. Modeling the control of infectious diseases: Effects of TV and social media advertisements. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1315-1343. doi: 10.3934/mbe.2018061

[20]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (247)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]