-
Previous Article
Mean-field backward stochastic Volterra integral equations
- DCDS-B Home
- This Issue
-
Next Article
Optimal stochastic differential games with VaR constraints
A mathematical model for control of vector borne diseases through media campaigns
1. | Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221 005, India, India |
2. | Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899 |
References:
[1] |
A. A. Adedotun, O. A. Morenikeji and A. B. Odaibo, Knowledge, attitudes and practices about malaria in an urban community in south-western Nigeria, J. Vector Borne Dis., 47 (2010), 155-159. |
[2] |
K. Blayneh, Y. Cao and H-D. Kwon, Optimal control of vector-borne diseases: Treatment and prevention, Discrete Contin. Dyn. Syst., Ser. B, 11 (2009), 587-611.
doi: 10.3934/dcdsb.2009.11.587. |
[3] |
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873-885.
doi: 10.1098/rsif.2009.0386. |
[4] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-thershold endemic equalibria for compartmental models of disease transmission, Math Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[5] |
N. Ferguson, Capturing human behaviour, Nature, 446 (2007).
doi: 10.1038/446733a. |
[6] |
S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. USA, 106 (2009), 6872-6877.
doi: 10.1073/pnas.0810762106. |
[7] |
S. Funk, E. Gilad and V. A. A. Jansen, Endemic disease, awareness, and local behavioural response, J. Theor. Biol., 264 (2010), 501-509.
doi: 10.1016/j.jtbi.2010.02.032. |
[8] |
S. Funk, M. Salathé and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247-256.
doi: 10.1098/rsif.2010.0142. |
[9] |
Health and Environment Linkages Initiative(HELI), [online document], Available from: \url{http://www.who.int/heli/risks/vectors/vector/en/index.html}., ().
|
[10] |
G. R. Hosack, P. A. Rossignol and P. van den Driessche, The control of vector-borne disease epidemics, J. Theor. Biol., 255 (2008), 16-25.
doi: 10.1016/j.jtbi.2008.07.033. |
[11] |
H. H. Hyman and P. B. Sheatsley, Some reasons why information campaigns fail, Pub. Opin. Quart., 11 (1947), 412-423. |
[12] |
H. Joshi, S. Lenhart, K. Albright and K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math Biosci. and Engg., 5 (2008), 757-770.
doi: 10.3934/mbe.2008.5.757. |
[13] |
M. J. Keeling and P. Rohani, "Modeling Infectious Diseases in Humans and Animals," Princeton University Press, New Jersey, 2008. |
[14] |
I. Z. Kiss, J. Cassell, M. Recker and P. L. Simon, The impact of information transmission on epidemic outbreaks, Math Biosci., 255 (2010), 1-10.
doi: 10.1016/j.mbs.2009.11.009. |
[15] |
J. Li, Effects of behavior change on the spread of AIDS epidemic, Math Comput. Model, 16 (1992), 103-111.
doi: 10.1016/0895-7177(92)90155-E. |
[16] |
J. Li, A malaria model with partial immunity in humans, Math Biosci. Engg., 5 (2008), 789-801.
doi: 10.3934/mbe.2008.5.789. |
[17] |
R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math Methods Med., 8 (2007), 153-164.
doi: 10.1080/17486700701425870. |
[18] |
Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65-74.
doi: 10.1142/S1793524508000023. |
[19] |
P. M. Luz, C. J. Struchiner and A. P. Galvani, Modeling transmission dynamics and control of vector- borne neglected tropical diseases, PLoS. Negl. Trop. Dis., 4 (2010), e761.
doi: 10.1371/journal.pntd.0000761. |
[20] |
Z. Ma and Jia Li, "Dynamical Modeling and Analysis of Epidemics," World Scientific, Singapore, 2009.
doi: 10.1142/9789812797506. |
[21] |
G. Macdonald, "The Epidemiology and Control of Malaria," Oxford University Press, London, 1957. |
[22] |
Malaria comic book from Chillibreeze, [online document], Available from: \url{http://www.chillibreeze.com/ebooks/malaria.asp}., ().
|
[23] |
A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221-1228.
doi: 10.1016/j.mcm.2010.12.005. |
[24] |
A. K. Misra, A. Sharma and V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay, J. Biol. Sys., 19 (2011), 389-402.
doi: 10.1142/S0218339011004020. |
[25] |
G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations, Discrete Contin. Dyn. Syst., Ser. B, 4 (2004), 1173-1202.
doi: 10.3934/dcdsb.2004.4.1173. |
[26] |
T. C. Nchinda, Malaria: A reemerging disease in Africa, Emerg. Infect Dis., 4 (1998), 398-403.
doi: 10.3201/eid0403.980313. |
[27] |
R. Ross, "The Prevention of Malaria," 2nd edition, Murray, London, 1911. |
[28] |
V. P. Sharma, Re-emergence of malaria in India, Indian J. Med. Res., 103 (1996), 26-45. |
[29] |
P. Tyagi, A. Roy and M. S. Malhotra, Knowledge, awareness and practices towards malaria in communities of rural, semi-rural and bordering areas of east Delhi (India), J. Vect. Borne. Dis., 42 (2005), 30-35. |
[30] |
WHO chikungunya factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs327/en/index.html}., ().
|
[31] |
WHO Dengue factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs117/en/index.html}., ().
|
[32] |
WHO Malaria factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs094/en/index.html}., ().
|
[33] |
WHO Yellow fever factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs100/en/index.html}., ().
|
show all references
References:
[1] |
A. A. Adedotun, O. A. Morenikeji and A. B. Odaibo, Knowledge, attitudes and practices about malaria in an urban community in south-western Nigeria, J. Vector Borne Dis., 47 (2010), 155-159. |
[2] |
K. Blayneh, Y. Cao and H-D. Kwon, Optimal control of vector-borne diseases: Treatment and prevention, Discrete Contin. Dyn. Syst., Ser. B, 11 (2009), 587-611.
doi: 10.3934/dcdsb.2009.11.587. |
[3] |
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873-885.
doi: 10.1098/rsif.2009.0386. |
[4] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-thershold endemic equalibria for compartmental models of disease transmission, Math Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[5] |
N. Ferguson, Capturing human behaviour, Nature, 446 (2007).
doi: 10.1038/446733a. |
[6] |
S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. USA, 106 (2009), 6872-6877.
doi: 10.1073/pnas.0810762106. |
[7] |
S. Funk, E. Gilad and V. A. A. Jansen, Endemic disease, awareness, and local behavioural response, J. Theor. Biol., 264 (2010), 501-509.
doi: 10.1016/j.jtbi.2010.02.032. |
[8] |
S. Funk, M. Salathé and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc. Interface, 7 (2010), 1247-256.
doi: 10.1098/rsif.2010.0142. |
[9] |
Health and Environment Linkages Initiative(HELI), [online document], Available from: \url{http://www.who.int/heli/risks/vectors/vector/en/index.html}., ().
|
[10] |
G. R. Hosack, P. A. Rossignol and P. van den Driessche, The control of vector-borne disease epidemics, J. Theor. Biol., 255 (2008), 16-25.
doi: 10.1016/j.jtbi.2008.07.033. |
[11] |
H. H. Hyman and P. B. Sheatsley, Some reasons why information campaigns fail, Pub. Opin. Quart., 11 (1947), 412-423. |
[12] |
H. Joshi, S. Lenhart, K. Albright and K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math Biosci. and Engg., 5 (2008), 757-770.
doi: 10.3934/mbe.2008.5.757. |
[13] |
M. J. Keeling and P. Rohani, "Modeling Infectious Diseases in Humans and Animals," Princeton University Press, New Jersey, 2008. |
[14] |
I. Z. Kiss, J. Cassell, M. Recker and P. L. Simon, The impact of information transmission on epidemic outbreaks, Math Biosci., 255 (2010), 1-10.
doi: 10.1016/j.mbs.2009.11.009. |
[15] |
J. Li, Effects of behavior change on the spread of AIDS epidemic, Math Comput. Model, 16 (1992), 103-111.
doi: 10.1016/0895-7177(92)90155-E. |
[16] |
J. Li, A malaria model with partial immunity in humans, Math Biosci. Engg., 5 (2008), 789-801.
doi: 10.3934/mbe.2008.5.789. |
[17] |
R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math Methods Med., 8 (2007), 153-164.
doi: 10.1080/17486700701425870. |
[18] |
Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65-74.
doi: 10.1142/S1793524508000023. |
[19] |
P. M. Luz, C. J. Struchiner and A. P. Galvani, Modeling transmission dynamics and control of vector- borne neglected tropical diseases, PLoS. Negl. Trop. Dis., 4 (2010), e761.
doi: 10.1371/journal.pntd.0000761. |
[20] |
Z. Ma and Jia Li, "Dynamical Modeling and Analysis of Epidemics," World Scientific, Singapore, 2009.
doi: 10.1142/9789812797506. |
[21] |
G. Macdonald, "The Epidemiology and Control of Malaria," Oxford University Press, London, 1957. |
[22] |
Malaria comic book from Chillibreeze, [online document], Available from: \url{http://www.chillibreeze.com/ebooks/malaria.asp}., ().
|
[23] |
A. K. Misra, A. Sharma and J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221-1228.
doi: 10.1016/j.mcm.2010.12.005. |
[24] |
A. K. Misra, A. Sharma and V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay, J. Biol. Sys., 19 (2011), 389-402.
doi: 10.1142/S0218339011004020. |
[25] |
G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations, Discrete Contin. Dyn. Syst., Ser. B, 4 (2004), 1173-1202.
doi: 10.3934/dcdsb.2004.4.1173. |
[26] |
T. C. Nchinda, Malaria: A reemerging disease in Africa, Emerg. Infect Dis., 4 (1998), 398-403.
doi: 10.3201/eid0403.980313. |
[27] |
R. Ross, "The Prevention of Malaria," 2nd edition, Murray, London, 1911. |
[28] |
V. P. Sharma, Re-emergence of malaria in India, Indian J. Med. Res., 103 (1996), 26-45. |
[29] |
P. Tyagi, A. Roy and M. S. Malhotra, Knowledge, awareness and practices towards malaria in communities of rural, semi-rural and bordering areas of east Delhi (India), J. Vect. Borne. Dis., 42 (2005), 30-35. |
[30] |
WHO chikungunya factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs327/en/index.html}., ().
|
[31] |
WHO Dengue factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs117/en/index.html}., ().
|
[32] |
WHO Malaria factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs094/en/index.html}., ().
|
[33] |
WHO Yellow fever factsheet, [online document], Available from: \url{http://www.who.int/mediacentre/factsheets/fs100/en/index.html}., ().
|
[1] |
Derdei Mahamat Bichara. Effects of migration on vector-borne diseases with forward and backward stage progression. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6297-6323. doi: 10.3934/dcdsb.2019140 |
[2] |
Xinli Hu, Yansheng Liu, Jianhong Wu. Culling structured hosts to eradicate vector-borne diseases. Mathematical Biosciences & Engineering, 2009, 6 (2) : 301-319. doi: 10.3934/mbe.2009.6.301 |
[3] |
Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587 |
[4] |
Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 |
[5] |
Riane Hajjami, Mustapha El Jarroudi, Aadil Lahrouz, Adel Settati, Mohamed EL Fatini, Kai Wang. Dynamic analysis of an $ SEIR $ epidemic model with a time lag in awareness allocated funds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4191-4225. doi: 10.3934/dcdsb.2020285 |
[6] |
Hem Joshi, Suzanne Lenhart, Kendra Albright, Kevin Gipson. Modeling the effect of information campaigns on the HIV epidemic in Uganda. Mathematical Biosciences & Engineering, 2008, 5 (4) : 757-770. doi: 10.3934/mbe.2008.5.757 |
[7] |
Tomás Caraballo, Mohamed El Fatini, Roger Pettersson, Regragui Taki. A stochastic SIRI epidemic model with relapse and media coverage. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3483-3501. doi: 10.3934/dcdsb.2018250 |
[8] |
Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 |
[9] |
Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049 |
[10] |
Xianyun Chen, Daozhou Gao. Effects of travel frequency on the persistence of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4677-4701. doi: 10.3934/dcdsb.2020119 |
[11] |
Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134 |
[12] |
Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 |
[13] |
Yanzhao Cao, Dawit Denu. Analysis of stochastic vector-host epidemic model with direct transmission. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2109-2127. doi: 10.3934/dcdsb.2016039 |
[14] |
Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119 |
[15] |
Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101 |
[16] |
Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993 |
[17] |
Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1447-1469. doi: 10.3934/dcdsb.2021097 |
[18] |
Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5171-5196. doi: 10.3934/dcdsb.2020338 |
[19] |
Arvind Kumar Misra, Rajanish Kumar Rai, Yasuhiro Takeuchi. Modeling the control of infectious diseases: Effects of TV and social media advertisements. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1315-1343. doi: 10.3934/mbe.2018061 |
[20] |
Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]