September  2013, 18(7): 1969-1993. doi: 10.3934/dcdsb.2013.18.1969

Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China, China

2. 

School of Mathematic and Statistics, Lanzhou University, Lanzhou, Gansu 730000

Received  March 2012 Revised  March 2013 Published  May 2013

In this paper, we consider a Kermack-McKendrick epidemic model with nonlocal dispersal. We find that the existence and nonexistence of traveling wave solutions are determined by the reproduction number. To prove the existence of nontrivial traveling wave solutions, we construct an invariant cone in a bounded domain with initial functions being defined on, and apply Schauder's fixed point theorem as well as limiting argument. Here, the compactness of the support set of dispersal kernel is needed when passing to an unbounded domain in the proof. Moreover, the nonexistence of traveling wave solutions is obtained by Laplace transform if the speed is less than the critical velocity.
Citation: Fei-Ying Yang, Yan Li, Wan-Tong Li, Zhi-Cheng Wang. Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1969-1993. doi: 10.3934/dcdsb.2013.18.1969
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, "Nonlocal Diffusion Problems," Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010.

[2]

P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136. doi: 10.1007/s002050050037.

[3]

P. Bates and G. Zhao, Existence, uniquenss and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440. doi: 10.1016/j.jmaa.2006.09.007.

[4]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439. doi: 10.1090/S0002-9939-04-07432-5.

[5]

X. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.

[6]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118. doi: 10.1016/j.jde.2007.11.002.

[7]

J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709. doi: 10.1137/060676854.

[8]

J. Coville and L. Dupaigne, On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755. doi: 10.1017/S0308210504000721.

[9]

P. De Mottoni, E. Orlandi and A. Tesei, Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection, Nonlinear Anal., 3 (1979), 663-675. doi: 10.1016/0362-546X(79)90095-6.

[10]

A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 459-482. doi: 10.1017/S0308210507000455.

[11]

A. Ducrot, P. Magal and S. Ruan, Travelling wave solutions in multigroup age-structure epidemic models, Arch. Ration. Mech. Anal., 195 (2010), 311-331. doi: 10.1007/s00205-008-0203-8.

[12]

P. Fife, An integrodifferential analog of semilinear parabolic PDEs, in "Partial Differential Equations and Applications" in "Lect. Notes" Pure Appl. Math., 177, Dekker, New York, (1996), 137-145.

[13]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in "Trends in Nonlinear Analysis," Springer, Berlin, (2003), 153-191.

[14]

R. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[15]

J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053. doi: 10.3934/cpaa.2009.8.2037.

[16]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, Euro. J. Appl. Math., 17 (2006), 221-232. doi: 10.1017/S0956792506006462.

[17]

V. Hutson, S. Martinez, K. Mischailow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517. doi: 10.1007/s00285-003-0210-1.

[18]

V. Hutson, W. Shen and G. T. Vickers, Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence, Rocky Mountain J. Math., 38 (2008), 1147-1175. doi: 10.1216/RMJ-2008-38-4-1147.

[19]

Y. Hosono and B. Ilyas, Travelling waves for a simple diffusive epidemic model, Math. Model Meth. Appl. Sci., 5 (1995), 935-966. doi: 10.1142/S0218202595000504.

[20]

C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596. doi: 10.3934/dcds.2010.26.551.

[21]

C.-Y. Kao, Y. Lou and W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072. doi: 10.3934/dcdsb.2012.17.2047.

[22]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. B, 115 (1927), 700-721. doi: 10.1098/rspa.1927.0118.

[23]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinerity, 19 (2006), 1253-1273. doi: 10.1088/0951-7715/19/6/003.

[24]

W.-T. Li, Y.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real Word Appl., 11 (2010), 2302-2313. doi: 10.1016/j.nonrwa.2009.07.005.

[25]

G. Lin, W.-T. Li and M.-J. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393-414. doi: 10.3934/dcdsb.2010.13.393.

[26]

J. D. Murray, "Mathematical Biology, II, Spatial Models and Biomedical Applications," Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.

[27]

S. Ma, Travelling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314. doi: 10.1006/jdeq.2000.3846.

[28]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222. doi: 10.1016/S0025-5564(03)00041-5.

[29]

S. Pan, Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity, J. Math. Anal. Appl., 346 (2008), 415-424. doi: 10.1016/j.jmaa.2008.05.057.

[30]

S. Pan, W.-T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392. doi: 10.1007/s00033-007-7005-y.

[31]

S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonlinear Anal., 72 (2010), 3150-3158. doi: 10.1016/j.na.2009.12.008.

[32]

K. Schumacher, Travelling-front solutions for integro-differential equations.I., J. Reine Angew. Math., 316 (1980), 54-70. doi: 10.1515/crll.1980.316.54.

[33]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 15 (2010), 747-795. doi: 10.1016/j.jde.2010.04.012.

[34]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581. doi: 10.1016/j.jde.2011.04.020.

[35]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal., 74 (2011), 814-826. doi: 10.1016/j.na.2010.09.032.

[36]

X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183 (2002), 434-461. doi: 10.1006/jdeq.2001.4129.

[37]

Z.-C. Wang, W.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Diff. Eqns., 20 (2008), 573-607. doi: 10.1007/s10884-008-9103-8.

[38]

Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084. doi: 10.1090/S0002-9947-08-04694-1.

[39]

Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. Ser. A, 466 (2010), 237-261. doi: 10.1098/rspa.2009.0377.

[40]

Z.-C. Wang and J. Wu, Traveling waves in a bio-reactor model with stage-structure, J. Math. Anal. Appl., 385 (2012), 683-692. doi: 10.1016/j.jmaa.2011.06.084.

[41]

D. V. Widder, "The Laplace Transform," Princeton University Press, Princeton, NJ, 1941.

[42]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45 (2009), 925-953. doi: 10.2977/prims/1260476648.

[43]

H. Yagisita, Existence of traveling waves for a nonlocal monostable equation: an abstract approach, Publ. Res. Inst. Math. Sci., 45 (2009), 955-979. doi: 10.2977/prims/1260476649.

[44]

L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neural networks, J. Differential Equations, 197 (2004), 162-196. doi: 10.1016/S0022-0396(03)00170-0.

[45]

G.-B. Zhang, W.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124. doi: 10.1016/j.jde.2012.01.014.

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. Toledo-Melero, "Nonlocal Diffusion Problems," Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010.

[2]

P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136. doi: 10.1007/s002050050037.

[3]

P. Bates and G. Zhao, Existence, uniquenss and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440. doi: 10.1016/j.jmaa.2006.09.007.

[4]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439. doi: 10.1090/S0002-9939-04-07432-5.

[5]

X. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.

[6]

J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118. doi: 10.1016/j.jde.2007.11.002.

[7]

J. Coville, J. Dávila and S. Martínez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 39 (2008), 1693-1709. doi: 10.1137/060676854.

[8]

J. Coville and L. Dupaigne, On a nonlocal reaction diffusion equation arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 727-755. doi: 10.1017/S0308210504000721.

[9]

P. De Mottoni, E. Orlandi and A. Tesei, Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection, Nonlinear Anal., 3 (1979), 663-675. doi: 10.1016/0362-546X(79)90095-6.

[10]

A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 459-482. doi: 10.1017/S0308210507000455.

[11]

A. Ducrot, P. Magal and S. Ruan, Travelling wave solutions in multigroup age-structure epidemic models, Arch. Ration. Mech. Anal., 195 (2010), 311-331. doi: 10.1007/s00205-008-0203-8.

[12]

P. Fife, An integrodifferential analog of semilinear parabolic PDEs, in "Partial Differential Equations and Applications" in "Lect. Notes" Pure Appl. Math., 177, Dekker, New York, (1996), 137-145.

[13]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in "Trends in Nonlinear Analysis," Springer, Berlin, (2003), 153-191.

[14]

R. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7 (1937), 355-369. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[15]

J. García-Melián and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053. doi: 10.3934/cpaa.2009.8.2037.

[16]

V. Hutson and M. Grinfeld, Non-local dispersal and bistability, Euro. J. Appl. Math., 17 (2006), 221-232. doi: 10.1017/S0956792506006462.

[17]

V. Hutson, S. Martinez, K. Mischailow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517. doi: 10.1007/s00285-003-0210-1.

[18]

V. Hutson, W. Shen and G. T. Vickers, Spectral theory for nonlocal dispersal with periodic or almost-periodic time dependence, Rocky Mountain J. Math., 38 (2008), 1147-1175. doi: 10.1216/RMJ-2008-38-4-1147.

[19]

Y. Hosono and B. Ilyas, Travelling waves for a simple diffusive epidemic model, Math. Model Meth. Appl. Sci., 5 (1995), 935-966. doi: 10.1142/S0218202595000504.

[20]

C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596. doi: 10.3934/dcds.2010.26.551.

[21]

C.-Y. Kao, Y. Lou and W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072. doi: 10.3934/dcdsb.2012.17.2047.

[22]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. B, 115 (1927), 700-721. doi: 10.1098/rspa.1927.0118.

[23]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinerity, 19 (2006), 1253-1273. doi: 10.1088/0951-7715/19/6/003.

[24]

W.-T. Li, Y.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real Word Appl., 11 (2010), 2302-2313. doi: 10.1016/j.nonrwa.2009.07.005.

[25]

G. Lin, W.-T. Li and M.-J. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393-414. doi: 10.3934/dcdsb.2010.13.393.

[26]

J. D. Murray, "Mathematical Biology, II, Spatial Models and Biomedical Applications," Third edition. Interdisciplinary Applied Mathematics, 18. Springer-Verlag, New York, 2003.

[27]

S. Ma, Travelling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314. doi: 10.1006/jdeq.2000.3846.

[28]

J. Medlock and M. Kot, Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222. doi: 10.1016/S0025-5564(03)00041-5.

[29]

S. Pan, Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity, J. Math. Anal. Appl., 346 (2008), 415-424. doi: 10.1016/j.jmaa.2008.05.057.

[30]

S. Pan, W.-T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392. doi: 10.1007/s00033-007-7005-y.

[31]

S. Pan, W.-T. Li and G. Lin, Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay, Nonlinear Anal., 72 (2010), 3150-3158. doi: 10.1016/j.na.2009.12.008.

[32]

K. Schumacher, Travelling-front solutions for integro-differential equations.I., J. Reine Angew. Math., 316 (1980), 54-70. doi: 10.1515/crll.1980.316.54.

[33]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 15 (2010), 747-795. doi: 10.1016/j.jde.2010.04.012.

[34]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581. doi: 10.1016/j.jde.2011.04.020.

[35]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity, Nonlinear Anal., 74 (2011), 814-826. doi: 10.1016/j.na.2010.09.032.

[36]

X. Wang, Metastability and stability of patterns in a convolution model for phase transitions, J. Differential Equations, 183 (2002), 434-461. doi: 10.1006/jdeq.2001.4129.

[37]

Z.-C. Wang, W.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Diff. Eqns., 20 (2008), 573-607. doi: 10.1007/s10884-008-9103-8.

[38]

Z.-C. Wang, W.-T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361 (2009), 2047-2084. doi: 10.1090/S0002-9947-08-04694-1.

[39]

Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. Ser. A, 466 (2010), 237-261. doi: 10.1098/rspa.2009.0377.

[40]

Z.-C. Wang and J. Wu, Traveling waves in a bio-reactor model with stage-structure, J. Math. Anal. Appl., 385 (2012), 683-692. doi: 10.1016/j.jmaa.2011.06.084.

[41]

D. V. Widder, "The Laplace Transform," Princeton University Press, Princeton, NJ, 1941.

[42]

H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45 (2009), 925-953. doi: 10.2977/prims/1260476648.

[43]

H. Yagisita, Existence of traveling waves for a nonlocal monostable equation: an abstract approach, Publ. Res. Inst. Math. Sci., 45 (2009), 955-979. doi: 10.2977/prims/1260476649.

[44]

L. Zhang, Existence, uniqueness and exponential stability of traveling wave solutions of some integral differential equations arising from neural networks, J. Differential Equations, 197 (2004), 162-196. doi: 10.1016/S0022-0396(03)00170-0.

[45]

G.-B. Zhang, W.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124. doi: 10.1016/j.jde.2012.01.014.

[1]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[2]

Jinling Zhou, Yu Yang, Cheng-Hsiung Hsu. Traveling waves for a nonlocal dispersal vaccination model with general incidence. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1469-1495. doi: 10.3934/dcdsb.2019236

[3]

Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125

[4]

Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001

[5]

Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3113-3139. doi: 10.3934/dcdss.2020340

[6]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045

[7]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[8]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[9]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure and Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[10]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[11]

Guo-Bao Zhang, Fang-Di Dong, Wan-Tong Li. Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1511-1541. doi: 10.3934/dcdsb.2018218

[12]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[13]

Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107

[14]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

[15]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[16]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[17]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[18]

Weiran Sun, Min Tang. A relaxation method for one dimensional traveling waves of singular and nonlocal equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1459-1491. doi: 10.3934/dcdsb.2013.18.1459

[19]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[20]

Albert Erkip, Abba I. Ramadan. Existence of traveling waves for a class of nonlocal nonlinear equations with bell shaped kernels. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2125-2132. doi: 10.3934/cpaa.2017105

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (264)
  • HTML views (0)
  • Cited by (35)

Other articles
by authors

[Back to Top]