September  2013, 18(7): 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system

1. 

School of Mathematical Sciences, Capital Normal University, Beijing 100048

2. 

School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China

3. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  September 2012 Revised  April 2013 Published  May 2013

In this paper, we point out an error in the paper: Positive periodic solution for Brillouin electron beam focusing system, Discrete Contin. Dyn. Syst. Ser. B, 16(2011), 385-392. Meanwhile, it is pointed out that, for $0 < a < 1$, the conjecture that the Brillouin electron beam focusing system $x''+a(1+\cos 2t)x=1/x$ admits positive periodic solutions is still an open problem.
Citation: Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995
References:
[1]

J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system,, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 385. doi: 10.3934/dcdsb.2011.16.385. Google Scholar

[2]

V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric magnetically focused beam values,, J. British Inst. Radio Engineers, 18 (1958), 696. Google Scholar

[3]

R. Ortega, Periodic perturbations of an isochronous center,, Qual. Theory Dyn. Syst., 3 (2002), 83. doi: 10.1007/BF02969334. Google Scholar

[4]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance,, Discrete Contin. Dyn. Syst., 8 (2002), 907. doi: 10.3934/dcds.2002.8.907. Google Scholar

[5]

T. Ding, A boundary value problem for the periodic Brillouin focusing system,, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31. Google Scholar

[6]

Y. Ye and X. Wang, Nonlinear differential equations in electron beam focusing theory,, Acta Math. Appl. Sinica, 1 (1978), 13. Google Scholar

[7]

M. R. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equation,, Proc. Roy. Soc. Edinburgh, 128 (1998), 1099. doi: 10.1017/S0308210500030080. Google Scholar

show all references

References:
[1]

J. Ren, Z. Cheng and S. Siegmund, Positive periodic solution for Brillouin electron beam focusing system,, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 385. doi: 10.3934/dcdsb.2011.16.385. Google Scholar

[2]

V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric magnetically focused beam values,, J. British Inst. Radio Engineers, 18 (1958), 696. Google Scholar

[3]

R. Ortega, Periodic perturbations of an isochronous center,, Qual. Theory Dyn. Syst., 3 (2002), 83. doi: 10.1007/BF02969334. Google Scholar

[4]

D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced isochronous oscillators at resonance,, Discrete Contin. Dyn. Syst., 8 (2002), 907. doi: 10.3934/dcds.2002.8.907. Google Scholar

[5]

T. Ding, A boundary value problem for the periodic Brillouin focusing system,, Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31. Google Scholar

[6]

Y. Ye and X. Wang, Nonlinear differential equations in electron beam focusing theory,, Acta Math. Appl. Sinica, 1 (1978), 13. Google Scholar

[7]

M. R. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equation,, Proc. Roy. Soc. Edinburgh, 128 (1998), 1099. doi: 10.1017/S0308210500030080. Google Scholar

[1]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[2]

Maurizio Garrione, Manuel Zamora. Periodic solutions of the Brillouin electron beam focusing equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 961-975. doi: 10.3934/cpaa.2014.13.961

[3]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[4]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[5]

Tiantian Ma, Zaihong Wang. Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1563-1581. doi: 10.3934/dcds.2013.33.1563

[6]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[7]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[8]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[9]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[10]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[11]

Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic & Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251

[12]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[13]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

[14]

Robert Roussarie. Putting a boundary to the space of Liénard equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 441-448. doi: 10.3934/dcds.2007.17.441

[15]

Jitka Machalová, Horymír Netuka. Optimal control of system governed by the Gao beam equation. Conference Publications, 2015, 2015 (special) : 783-792. doi: 10.3934/proc.2015.0783

[16]

Isaac A. García, Jaume Giné, Jaume Llibre. Liénard and Riccati differential equations related via Lie Algebras. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 485-494. doi: 10.3934/dcdsb.2008.10.485

[17]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[18]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[19]

Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3085-3108. doi: 10.3934/dcds.2013.33.3085

[20]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]