September  2013, 18(7): 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system

1. 

School of Mathematical Sciences, Capital Normal University, Beijing 100048

2. 

School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China

3. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  September 2012 Revised  April 2013 Published  May 2013

In this paper, we point out an error in the paper: Positive periodic solution for Brillouin electron beam focusing system, Discrete Contin. Dyn. Syst. Ser. B, 16(2011), 385-392. Meanwhile, it is pointed out that, for $0 < a < 1$, the conjecture that the Brillouin electron beam focusing system $x''+a(1+\cos 2t)x=1/x$ admits positive periodic solutions is still an open problem.
Citation: Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995
References:
[1]

Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 385-392. doi: 10.3934/dcdsb.2011.16.385.  Google Scholar

[2]

J. British Inst. Radio Engineers, 18 (1958), 696-708. Google Scholar

[3]

Qual. Theory Dyn. Syst., 3 (2002), 83-91. doi: 10.1007/BF02969334.  Google Scholar

[4]

Discrete Contin. Dyn. Syst., 8 (2002), 907-930. doi: 10.3934/dcds.2002.8.907.  Google Scholar

[5]

Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31-38. Google Scholar

[6]

Acta Math. Appl. Sinica, 1 (1978), 13-41.  Google Scholar

[7]

Proc. Roy. Soc. Edinburgh, Sect. A, 128 (1998), 1099-1114. doi: 10.1017/S0308210500030080.  Google Scholar

show all references

References:
[1]

Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 385-392. doi: 10.3934/dcdsb.2011.16.385.  Google Scholar

[2]

J. British Inst. Radio Engineers, 18 (1958), 696-708. Google Scholar

[3]

Qual. Theory Dyn. Syst., 3 (2002), 83-91. doi: 10.1007/BF02969334.  Google Scholar

[4]

Discrete Contin. Dyn. Syst., 8 (2002), 907-930. doi: 10.3934/dcds.2002.8.907.  Google Scholar

[5]

Acta Sci. Natur. Univ. Pekinensis, 11 (1965), 31-38. Google Scholar

[6]

Acta Math. Appl. Sinica, 1 (1978), 13-41.  Google Scholar

[7]

Proc. Roy. Soc. Edinburgh, Sect. A, 128 (1998), 1099-1114. doi: 10.1017/S0308210500030080.  Google Scholar

[1]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[2]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[3]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

[4]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[5]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[6]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[7]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[8]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[9]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[10]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[11]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[12]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[13]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[14]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[15]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[18]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[19]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[20]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]