October  2013, 18(8): 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

Global analysis of age-structured within-host virus model

1. 

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, United States

Received  March 2012 Revised  December 2012 Published  July 2013

A mathematical model of a within-host viral infection with explicit age-since-infection structure for infected cells is presented. A global analysis of the model is conducted. It is shown that when the basic reproductive number falls below unity, the infection dies out. On the contrary, when the basic reproductive number exceeds unity, there exists a unique positive equilibrium that attracts all positive solutions of the model. The global stability analysis combines the existence of a compact global attractor and a Lyapunov function.
Citation: Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999
References:
[1]

R. Adams and J. Fournier, "Sobolev Spaces,'', Second edition, 140 (2003).   Google Scholar

[2]

C. L. Althaus, A. S. De Vos and R. J. De Boer, Reassessing the human immunodeficiency virus type 1 life cycle through age-structured modeling: life span of infected cells, viral generation time, and basic reproductive number, $R_0$,, J. Virol., 83 (2009), 7659.   Google Scholar

[3]

P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis,, Math. Med. Biol., 25 (2008), 285.   Google Scholar

[4]

M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate,, J. Theor. Biol., 229 (2004), 281.  doi: 10.1016/j.jtbi.2004.04.015.  Google Scholar

[5]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,'', Math. Surv. Monogr., 25 (1988).   Google Scholar

[6]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[7]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25.  doi: 10.1137/110826588.  Google Scholar

[8]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[9]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM J. Math. Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[10]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267.  doi: 10.3934/mbe.2004.1.267.  Google Scholar

[11]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73.  doi: 10.1016/S0025-5564(02)00099-8.  Google Scholar

[12]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[13]

L. B. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM J. Appl. Math., 67 (2007), 731.  doi: 10.1137/060663945.  Google Scholar

[14]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035.   Google Scholar

[15]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics,'', Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985).   Google Scholar

show all references

References:
[1]

R. Adams and J. Fournier, "Sobolev Spaces,'', Second edition, 140 (2003).   Google Scholar

[2]

C. L. Althaus, A. S. De Vos and R. J. De Boer, Reassessing the human immunodeficiency virus type 1 life cycle through age-structured modeling: life span of infected cells, viral generation time, and basic reproductive number, $R_0$,, J. Virol., 83 (2009), 7659.   Google Scholar

[3]

P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis,, Math. Med. Biol., 25 (2008), 285.   Google Scholar

[4]

M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate,, J. Theor. Biol., 229 (2004), 281.  doi: 10.1016/j.jtbi.2004.04.015.  Google Scholar

[5]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,'', Math. Surv. Monogr., 25 (1988).   Google Scholar

[6]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[7]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25.  doi: 10.1137/110826588.  Google Scholar

[8]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[9]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM J. Math. Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[10]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267.  doi: 10.3934/mbe.2004.1.267.  Google Scholar

[11]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73.  doi: 10.1016/S0025-5564(02)00099-8.  Google Scholar

[12]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[13]

L. B. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM J. Appl. Math., 67 (2007), 731.  doi: 10.1137/060663945.  Google Scholar

[14]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035.   Google Scholar

[15]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics,'', Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985).   Google Scholar

[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[3]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[6]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[10]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[14]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[18]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (42)

Other articles
by authors

[Back to Top]