October  2013, 18(8): 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

Global analysis of age-structured within-host virus model

1. 

Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, United States

Received  March 2012 Revised  December 2012 Published  July 2013

A mathematical model of a within-host viral infection with explicit age-since-infection structure for infected cells is presented. A global analysis of the model is conducted. It is shown that when the basic reproductive number falls below unity, the infection dies out. On the contrary, when the basic reproductive number exceeds unity, there exists a unique positive equilibrium that attracts all positive solutions of the model. The global stability analysis combines the existence of a compact global attractor and a Lyapunov function.
Citation: Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999
References:
[1]

R. Adams and J. Fournier, "Sobolev Spaces,'', Second edition, 140 (2003). Google Scholar

[2]

C. L. Althaus, A. S. De Vos and R. J. De Boer, Reassessing the human immunodeficiency virus type 1 life cycle through age-structured modeling: life span of infected cells, viral generation time, and basic reproductive number, $R_0$,, J. Virol., 83 (2009), 7659. Google Scholar

[3]

P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis,, Math. Med. Biol., 25 (2008), 285. Google Scholar

[4]

M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate,, J. Theor. Biol., 229 (2004), 281. doi: 10.1016/j.jtbi.2004.04.015. Google Scholar

[5]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,'', Math. Surv. Monogr., 25 (1988). Google Scholar

[6]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025. Google Scholar

[7]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25. doi: 10.1137/110826588. Google Scholar

[8]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122. Google Scholar

[9]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM J. Math. Anal., 37 (2005), 251. doi: 10.1137/S0036141003439173. Google Scholar

[10]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267. doi: 10.3934/mbe.2004.1.267. Google Scholar

[11]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73. doi: 10.1016/S0025-5564(02)00099-8. Google Scholar

[12]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107. Google Scholar

[13]

L. B. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM J. Appl. Math., 67 (2007), 731. doi: 10.1137/060663945. Google Scholar

[14]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035. Google Scholar

[15]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics,'', Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985). Google Scholar

show all references

References:
[1]

R. Adams and J. Fournier, "Sobolev Spaces,'', Second edition, 140 (2003). Google Scholar

[2]

C. L. Althaus, A. S. De Vos and R. J. De Boer, Reassessing the human immunodeficiency virus type 1 life cycle through age-structured modeling: life span of infected cells, viral generation time, and basic reproductive number, $R_0$,, J. Virol., 83 (2009), 7659. Google Scholar

[3]

P. De Leenheer and S. S. Pilyugin, Multistrain virus dynamics with mutations: A global analysis,, Math. Med. Biol., 25 (2008), 285. Google Scholar

[4]

M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate,, J. Theor. Biol., 229 (2004), 281. doi: 10.1016/j.jtbi.2004.04.015. Google Scholar

[5]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,'', Math. Surv. Monogr., 25 (1988). Google Scholar

[6]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388. doi: 10.1137/0520025. Google Scholar

[7]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25. doi: 10.1137/110826588. Google Scholar

[8]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122. Google Scholar

[9]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM J. Math. Anal., 37 (2005), 251. doi: 10.1137/S0036141003439173. Google Scholar

[10]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267. doi: 10.3934/mbe.2004.1.267. Google Scholar

[11]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73. doi: 10.1016/S0025-5564(02)00099-8. Google Scholar

[12]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107. Google Scholar

[13]

L. B. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM J. Appl. Math., 67 (2007), 731. doi: 10.1137/060663945. Google Scholar

[14]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035. Google Scholar

[15]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics,'', Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985). Google Scholar

[1]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[2]

Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329

[3]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[4]

Jinliang Wang, Jiying Lang, Xianning Liu. Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3215-3233. doi: 10.3934/dcdsb.2015.20.3215

[5]

Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525

[6]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[7]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[8]

Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133

[9]

Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026

[10]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[11]

Shingo Iwami, Shinji Nakaoka, Yasuhiro Takeuchi. Mathematical analysis of a HIV model with frequency dependence and viral diversity. Mathematical Biosciences & Engineering, 2008, 5 (3) : 457-476. doi: 10.3934/mbe.2008.5.457

[12]

Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

[13]

Zhixing Hu, Weijuan Pang, Fucheng Liao, Wanbiao Ma. Analysis of a CD4$^+$ T cell viral infection model with a class of saturated infection rate. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 735-745. doi: 10.3934/dcdsb.2014.19.735

[14]

Suxia Zhang, Hongbin Guo, Robert Smith?. Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1291-1313. doi: 10.3934/mbe.2018060

[15]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[16]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[17]

Patrick W. Nelson, Michael A. Gilchrist, Daniel Coombs, James M. Hyman, Alan S. Perelson. An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells. Mathematical Biosciences & Engineering, 2004, 1 (2) : 267-288. doi: 10.3934/mbe.2004.1.267

[18]

Shaoli Wang, Jianhong Wu, Libin Rong. A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences & Engineering, 2017, 14 (3) : 805-820. doi: 10.3934/mbe.2017044

[19]

Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074

[20]

Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (37)

Other articles
by authors

[Back to Top]