October  2013, 18(8): 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters

1. 

Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China, China, China, China

Received  December 2012 Revised  June 2013 Published  July 2013

This paper further investigates a new type synchronization called full state hybrid function projective synchronization (FSHFPS). Based on the Lyapunov stability theory, the adaptive control law and the parameter update laws are derived to make FSHFPS between two financial hyperchaotic systems. And FSHFPS of financial hyperchaotic systems is first studied in this paper. The method is successfully applied to the synchronization between two identical financial hyperchaotic systems and two different financial hyperchaotic systems when the parameters unknown. Numerical simulations are presented to demonstrate the effectiveness of the proposed controllers.
Citation: Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019
References:
[1]

L. M.Park and T. L.Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990), 64 (1990), 821. doi: 10.1103/PhysRevLett.64.821. Google Scholar

[2]

E. H. Park, M. A. Zaks and J. Kurths, Phase synchronization in the forced Lorenz system, Phys. Rev. E. 60 (1990), 60 (1990), 6627. doi: 10.1103/PhysRevE.60.6627. Google Scholar

[3]

Z. B. Li and X. S. Zhao, Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters, Nonlinear Anal. Real World Appl. 12 (2011), 12 (2011), 2607. doi: 10.1016/j.nonrwa.2011.03.009. Google Scholar

[4]

H. N. Agiza, Choas synchronization of Lüdynamical system, Nonlinear Anal. 58 (2004), 58 (2004), 11. doi: 10.1016/j.na.2004.04.002. Google Scholar

[5]

G. L. Cai, P. Hu and Y. X. Li, Modified function lag projective synchronization of a financial hyperchaotic system, Nonlinear Dyn. 69 (2012), 69 (2012), 1457. doi: 10.1007/s11071-012-0361-y. Google Scholar

[6]

G. L. Cai, H. X. Wang and S. Zheng, Adaptive function projective synchronization of two different hyperchaotic systems with unknown parameters, Chin. J. Phys. 47 (2009), 47 (2009), 662. Google Scholar

[7]

D. L. Chen, J. T. Sun and C. S. Huang, Impulsive control and synchronization of general chaotic system, Chaos Solitons Fractals 38 (2006), 38 (2006), 213. doi: 10.1016/j.chaos.2005.05.057. Google Scholar

[8]

M. F. Hu, Z. F. Xu, R. Zhang and A. H. Hu, Parameters identification and adaptive full state hypbrid projective synchronization of chaotic systems, Physica A. 361 (2007), 361 (2007), 231. doi: 10.1016/j.physleta.2006.08.092. Google Scholar

[9]

D. Guégan, Chaos in economics and finance, Annu Rev Control 33 (2009), 33 (2009), 89. Google Scholar

[10]

Q. Gao and J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn. 58 (2009), 58 (2009), 209. doi: 10.1007/s11071-009-9472-5. Google Scholar

[11]

H. J. Yu, G. L. Cai and Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dyn. 67 (2012), 67 (2012), 2171. doi: 10.1007/s11071-011-0137-9. Google Scholar

[12]

J. Ding, W. G. Yang and H. X. Yao, A new Modified Hyperchaotic Finance System and its Control, International Journal of Nonlinear Science, Nonlinear Dyn. 8 (2009), 8 (2009), 59. Google Scholar

show all references

References:
[1]

L. M.Park and T. L.Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990), 64 (1990), 821. doi: 10.1103/PhysRevLett.64.821. Google Scholar

[2]

E. H. Park, M. A. Zaks and J. Kurths, Phase synchronization in the forced Lorenz system, Phys. Rev. E. 60 (1990), 60 (1990), 6627. doi: 10.1103/PhysRevE.60.6627. Google Scholar

[3]

Z. B. Li and X. S. Zhao, Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters, Nonlinear Anal. Real World Appl. 12 (2011), 12 (2011), 2607. doi: 10.1016/j.nonrwa.2011.03.009. Google Scholar

[4]

H. N. Agiza, Choas synchronization of Lüdynamical system, Nonlinear Anal. 58 (2004), 58 (2004), 11. doi: 10.1016/j.na.2004.04.002. Google Scholar

[5]

G. L. Cai, P. Hu and Y. X. Li, Modified function lag projective synchronization of a financial hyperchaotic system, Nonlinear Dyn. 69 (2012), 69 (2012), 1457. doi: 10.1007/s11071-012-0361-y. Google Scholar

[6]

G. L. Cai, H. X. Wang and S. Zheng, Adaptive function projective synchronization of two different hyperchaotic systems with unknown parameters, Chin. J. Phys. 47 (2009), 47 (2009), 662. Google Scholar

[7]

D. L. Chen, J. T. Sun and C. S. Huang, Impulsive control and synchronization of general chaotic system, Chaos Solitons Fractals 38 (2006), 38 (2006), 213. doi: 10.1016/j.chaos.2005.05.057. Google Scholar

[8]

M. F. Hu, Z. F. Xu, R. Zhang and A. H. Hu, Parameters identification and adaptive full state hypbrid projective synchronization of chaotic systems, Physica A. 361 (2007), 361 (2007), 231. doi: 10.1016/j.physleta.2006.08.092. Google Scholar

[9]

D. Guégan, Chaos in economics and finance, Annu Rev Control 33 (2009), 33 (2009), 89. Google Scholar

[10]

Q. Gao and J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn. 58 (2009), 58 (2009), 209. doi: 10.1007/s11071-009-9472-5. Google Scholar

[11]

H. J. Yu, G. L. Cai and Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dyn. 67 (2012), 67 (2012), 2171. doi: 10.1007/s11071-011-0137-9. Google Scholar

[12]

J. Ding, W. G. Yang and H. X. Yao, A new Modified Hyperchaotic Finance System and its Control, International Journal of Nonlinear Science, Nonlinear Dyn. 8 (2009), 8 (2009), 59. Google Scholar

[1]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[2]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[3]

Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

[4]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019192

[5]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[6]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[7]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[8]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[9]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[10]

Shin-Ichiro Ei, Kei Nishi, Yasumasa Nishiura, Takashi Teramoto. Annihilation of two interfaces in a hybrid system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 857-869. doi: 10.3934/dcdss.2015.8.857

[11]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[12]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[13]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[14]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

[15]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[16]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

[17]

Ruwu Xiao, Geng Li, Yuping Zhao. On the design of full duplex wireless system with chaotic sequences. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 783-793. doi: 10.3934/dcdss.2019052

[18]

Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329

[19]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[20]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]