October  2013, 18(8): 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters

1. 

Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China, China, China, China

Received  December 2012 Revised  June 2013 Published  July 2013

This paper further investigates a new type synchronization called full state hybrid function projective synchronization (FSHFPS). Based on the Lyapunov stability theory, the adaptive control law and the parameter update laws are derived to make FSHFPS between two financial hyperchaotic systems. And FSHFPS of financial hyperchaotic systems is first studied in this paper. The method is successfully applied to the synchronization between two identical financial hyperchaotic systems and two different financial hyperchaotic systems when the parameters unknown. Numerical simulations are presented to demonstrate the effectiveness of the proposed controllers.
Citation: Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019
References:
[1]

L. M.Park and T. L.Carroll, Synchronization in chaotic systems Phys. Rev. Lett. 64 (1990), 821-823. doi: 10.1103/PhysRevLett.64.821.

[2]

E. H. Park, M. A. Zaks and J. Kurths, Phase synchronization in the forced Lorenz system Phys. Rev. E. 60 (1990), 6627-2238. doi: 10.1103/PhysRevE.60.6627.

[3]

Z. B. Li and X. S. Zhao, Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters Nonlinear Anal. Real World Appl. 12 (2011), 2607-2615. doi: 10.1016/j.nonrwa.2011.03.009.

[4]

H. N. Agiza, Choas synchronization of Lüdynamical system Nonlinear Anal. 58 (2004), 11-20 doi: 10.1016/j.na.2004.04.002.

[5]

G. L. Cai, P. Hu and Y. X. Li, Modified function lag projective synchronization of a financial hyperchaotic system Nonlinear Dyn. 69 (2012), 1457-1464 doi: 10.1007/s11071-012-0361-y.

[6]

G. L. Cai, H. X. Wang and S. Zheng, Adaptive function projective synchronization of two different hyperchaotic systems with unknown parameters Chin. J. Phys. 47 (2009), 662-669

[7]

D. L. Chen, J. T. Sun and C. S. Huang, Impulsive control and synchronization of general chaotic system Chaos Solitons Fractals 38 (2006), 213-218 doi: 10.1016/j.chaos.2005.05.057.

[8]

M. F. Hu, Z. F. Xu, R. Zhang and A. H. Hu, Parameters identification and adaptive full state hypbrid projective synchronization of chaotic systems Physica A. 361 (2007), 231-237 doi: 10.1016/j.physleta.2006.08.092.

[9]

D. Guégan, Chaos in economics and finance Annu Rev Control 33 (2009), 89-93

[10]

Q. Gao and J. H. Ma, Chaos and Hopf bifurcation of a finance system Nonlinear Dyn. 58 (2009), 209-216 doi: 10.1007/s11071-009-9472-5.

[11]

H. J. Yu, G. L. Cai and Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system Nonlinear Dyn. 67 (2012), 2171-2182 doi: 10.1007/s11071-011-0137-9.

[12]

J. Ding, W. G. Yang and H. X. Yao, A new Modified Hyperchaotic Finance System and its Control, International Journal of Nonlinear Science Nonlinear Dyn. 8 (2009), 59-66

show all references

References:
[1]

L. M.Park and T. L.Carroll, Synchronization in chaotic systems Phys. Rev. Lett. 64 (1990), 821-823. doi: 10.1103/PhysRevLett.64.821.

[2]

E. H. Park, M. A. Zaks and J. Kurths, Phase synchronization in the forced Lorenz system Phys. Rev. E. 60 (1990), 6627-2238. doi: 10.1103/PhysRevE.60.6627.

[3]

Z. B. Li and X. S. Zhao, Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters Nonlinear Anal. Real World Appl. 12 (2011), 2607-2615. doi: 10.1016/j.nonrwa.2011.03.009.

[4]

H. N. Agiza, Choas synchronization of Lüdynamical system Nonlinear Anal. 58 (2004), 11-20 doi: 10.1016/j.na.2004.04.002.

[5]

G. L. Cai, P. Hu and Y. X. Li, Modified function lag projective synchronization of a financial hyperchaotic system Nonlinear Dyn. 69 (2012), 1457-1464 doi: 10.1007/s11071-012-0361-y.

[6]

G. L. Cai, H. X. Wang and S. Zheng, Adaptive function projective synchronization of two different hyperchaotic systems with unknown parameters Chin. J. Phys. 47 (2009), 662-669

[7]

D. L. Chen, J. T. Sun and C. S. Huang, Impulsive control and synchronization of general chaotic system Chaos Solitons Fractals 38 (2006), 213-218 doi: 10.1016/j.chaos.2005.05.057.

[8]

M. F. Hu, Z. F. Xu, R. Zhang and A. H. Hu, Parameters identification and adaptive full state hypbrid projective synchronization of chaotic systems Physica A. 361 (2007), 231-237 doi: 10.1016/j.physleta.2006.08.092.

[9]

D. Guégan, Chaos in economics and finance Annu Rev Control 33 (2009), 89-93

[10]

Q. Gao and J. H. Ma, Chaos and Hopf bifurcation of a finance system Nonlinear Dyn. 58 (2009), 209-216 doi: 10.1007/s11071-009-9472-5.

[11]

H. J. Yu, G. L. Cai and Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system Nonlinear Dyn. 67 (2012), 2171-2182 doi: 10.1007/s11071-011-0137-9.

[12]

J. Ding, W. G. Yang and H. X. Yao, A new Modified Hyperchaotic Finance System and its Control, International Journal of Nonlinear Science Nonlinear Dyn. 8 (2009), 59-66

[1]

Ruofeng Rao, Shouming Zhong. Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1375-1393. doi: 10.3934/dcdss.2020280

[2]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[3]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[4]

Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021319

[5]

Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

[6]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[7]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[8]

Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5171-5196. doi: 10.3934/dcdsb.2020338

[9]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[10]

Catherine Lebiedzik. Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions. Evolution Equations and Control Theory, 2021, 10 (4) : 767-796. doi: 10.3934/eect.2020092

[11]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[12]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[13]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[14]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[15]

Haijun Wang, Fumin Zhang. Bifurcations, ultimate boundedness and singular orbits in a unified hyperchaotic Lorenz-type system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1791-1820. doi: 10.3934/dcdsb.2020003

[16]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[17]

Shin-Ichiro Ei, Kei Nishi, Yasumasa Nishiura, Takashi Teramoto. Annihilation of two interfaces in a hybrid system. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 857-869. doi: 10.3934/dcdss.2015.8.857

[18]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[19]

Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023

[20]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]