-
Previous Article
Blow-up dynamics of self-attracting diffusive particles driven by competing convexities
- DCDS-B Home
- This Issue
-
Next Article
Global analysis of age-structured within-host virus model
Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters
1. | Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, China, China, China, China |
References:
[1] |
L. M.Park and T. L.Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990), 64 (1990), 821.
doi: 10.1103/PhysRevLett.64.821. |
[2] |
E. H. Park, M. A. Zaks and J. Kurths, Phase synchronization in the forced Lorenz system, Phys. Rev. E. 60 (1990), 60 (1990), 6627.
doi: 10.1103/PhysRevE.60.6627. |
[3] |
Z. B. Li and X. S. Zhao, Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters, Nonlinear Anal. Real World Appl. 12 (2011), 12 (2011), 2607.
doi: 10.1016/j.nonrwa.2011.03.009. |
[4] |
H. N. Agiza, Choas synchronization of Lüdynamical system, Nonlinear Anal. 58 (2004), 58 (2004), 11.
doi: 10.1016/j.na.2004.04.002. |
[5] |
G. L. Cai, P. Hu and Y. X. Li, Modified function lag projective synchronization of a financial hyperchaotic system, Nonlinear Dyn. 69 (2012), 69 (2012), 1457.
doi: 10.1007/s11071-012-0361-y. |
[6] |
G. L. Cai, H. X. Wang and S. Zheng, Adaptive function projective synchronization of two different hyperchaotic systems with unknown parameters, Chin. J. Phys. 47 (2009), 47 (2009), 662.
|
[7] |
D. L. Chen, J. T. Sun and C. S. Huang, Impulsive control and synchronization of general chaotic system, Chaos Solitons Fractals 38 (2006), 38 (2006), 213.
doi: 10.1016/j.chaos.2005.05.057. |
[8] |
M. F. Hu, Z. F. Xu, R. Zhang and A. H. Hu, Parameters identification and adaptive full state hypbrid projective synchronization of chaotic systems, Physica A. 361 (2007), 361 (2007), 231.
doi: 10.1016/j.physleta.2006.08.092. |
[9] |
D. Guégan, Chaos in economics and finance, Annu Rev Control 33 (2009), 33 (2009), 89. Google Scholar |
[10] |
Q. Gao and J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn. 58 (2009), 58 (2009), 209.
doi: 10.1007/s11071-009-9472-5. |
[11] |
H. J. Yu, G. L. Cai and Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dyn. 67 (2012), 67 (2012), 2171.
doi: 10.1007/s11071-011-0137-9. |
[12] |
J. Ding, W. G. Yang and H. X. Yao, A new Modified Hyperchaotic Finance System and its Control, International Journal of Nonlinear Science, Nonlinear Dyn. 8 (2009), 8 (2009), 59.
|
show all references
References:
[1] |
L. M.Park and T. L.Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990), 64 (1990), 821.
doi: 10.1103/PhysRevLett.64.821. |
[2] |
E. H. Park, M. A. Zaks and J. Kurths, Phase synchronization in the forced Lorenz system, Phys. Rev. E. 60 (1990), 60 (1990), 6627.
doi: 10.1103/PhysRevE.60.6627. |
[3] |
Z. B. Li and X. S. Zhao, Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters, Nonlinear Anal. Real World Appl. 12 (2011), 12 (2011), 2607.
doi: 10.1016/j.nonrwa.2011.03.009. |
[4] |
H. N. Agiza, Choas synchronization of Lüdynamical system, Nonlinear Anal. 58 (2004), 58 (2004), 11.
doi: 10.1016/j.na.2004.04.002. |
[5] |
G. L. Cai, P. Hu and Y. X. Li, Modified function lag projective synchronization of a financial hyperchaotic system, Nonlinear Dyn. 69 (2012), 69 (2012), 1457.
doi: 10.1007/s11071-012-0361-y. |
[6] |
G. L. Cai, H. X. Wang and S. Zheng, Adaptive function projective synchronization of two different hyperchaotic systems with unknown parameters, Chin. J. Phys. 47 (2009), 47 (2009), 662.
|
[7] |
D. L. Chen, J. T. Sun and C. S. Huang, Impulsive control and synchronization of general chaotic system, Chaos Solitons Fractals 38 (2006), 38 (2006), 213.
doi: 10.1016/j.chaos.2005.05.057. |
[8] |
M. F. Hu, Z. F. Xu, R. Zhang and A. H. Hu, Parameters identification and adaptive full state hypbrid projective synchronization of chaotic systems, Physica A. 361 (2007), 361 (2007), 231.
doi: 10.1016/j.physleta.2006.08.092. |
[9] |
D. Guégan, Chaos in economics and finance, Annu Rev Control 33 (2009), 33 (2009), 89. Google Scholar |
[10] |
Q. Gao and J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn. 58 (2009), 58 (2009), 209.
doi: 10.1007/s11071-009-9472-5. |
[11] |
H. J. Yu, G. L. Cai and Y. X. Li, Dynamic analysis and control of a new hyperchaotic finance system, Nonlinear Dyn. 67 (2012), 67 (2012), 2171.
doi: 10.1007/s11071-011-0137-9. |
[12] |
J. Ding, W. G. Yang and H. X. Yao, A new Modified Hyperchaotic Finance System and its Control, International Journal of Nonlinear Science, Nonlinear Dyn. 8 (2009), 8 (2009), 59.
|
[1] |
István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773 |
[2] |
Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 |
[3] |
Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039 |
[4] |
Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192 |
[5] |
Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775 |
[6] |
Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011 |
[7] |
Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827 |
[8] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 |
[9] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 |
[10] |
Shin-Ichiro Ei, Kei Nishi, Yasumasa Nishiura, Takashi Teramoto. Annihilation of two interfaces in a hybrid system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 857-869. doi: 10.3934/dcdss.2015.8.857 |
[11] |
Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443 |
[12] |
Haijun Wang, Fumin Zhang. Bifurcations, ultimate boundedness and singular orbits in a unified hyperchaotic Lorenz-type system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020003 |
[13] |
Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks & Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012 |
[14] |
Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019 |
[15] |
Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469 |
[16] |
Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671 |
[17] |
Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631 |
[18] |
Ruwu Xiao, Geng Li, Yuping Zhao. On the design of full duplex wireless system with chaotic sequences. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 783-793. doi: 10.3934/dcdss.2019052 |
[19] |
Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329 |
[20] |
Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]