-
Previous Article
Mean-square convergence of numerical approximations for a class of backward stochastic differential equations
- DCDS-B Home
- This Issue
-
Next Article
Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters
Blow-up dynamics of self-attracting diffusive particles driven by competing convexities
1. | Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669, École Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France |
2. | Laboratoire d'Analyse et Probabilité, Université d'Evry Val d'Essonne, 23 Bd. de France, F-91037 Evry Cedex, France |
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).
|
[2] |
D. Benedetto, E. Caglioti, J. A. Carrillo and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media,, J. Stat. Phys., 91 (1998), 979.
doi: 10.1023/A:1023032000560. |
[3] |
D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media,, RAIRO Modél. Math. Anal. Numér., 31 (1997), 615.
|
[4] |
P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III,, Colloq. Math., 68 (1995), 229.
|
[5] |
P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I,, Colloq. Math., 66 (1994), 319.
|
[6] |
P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems,, SIAM J. Appl. Math., 59 (1999), 845.
doi: 10.1137/S0036139996313447. |
[7] |
A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model,, SIAM J. Numer. Anal., 46 (2008), 691.
doi: 10.1137/070683337. |
[8] |
A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Electron. J. Diff. Eqns., 2006 (2006), 1.
|
[9] |
V. Calvez and J. A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities,, Proc. Amer. Math. Soc., 140 (2012), 3515.
doi: 10.1090/S0002-9939-2012-11306-1. |
[10] |
V. Calvez, L. Corrias and A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension,, Comm. Partial Differential Equations, 37 (2012), 561.
doi: 10.1080/03605302.2012.655824. |
[11] |
V. Calvez, B. Perthame and M. Sharifi tabar, Modified Keller-Segel system and critical mass for the log interaction kernel,, in, 429 (2007), 45.
doi: 10.1090/conm/429/08229. |
[12] |
E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbbS^n$,, Geom. Funct. Anal., 2 (1992), 90.
doi: 10.1007/BF01895706. |
[13] |
J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Rat. Mech. Anal., 179 (2006), 217.
doi: 10.1007/s00205-005-0386-1. |
[14] |
J. A. Carrillo and G. Toscani, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations,, in, (2004), 234.
|
[15] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions,, Milan J. Math., 72 (2004), 1.
doi: 10.1007/s00032-003-0026-x. |
[16] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Property of Functions,'', Studies in Advanced Mathematics, (1992).
|
[17] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.
doi: 10.2307/2153966. |
[18] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.
doi: 10.1137/S0036141096303359. |
[19] |
E. F. Keller and L. A. Segel., Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.
doi: 10.1016/0022-5193(70)90092-5. |
[20] |
E. F. Keller and L. A. Segel, Model for chemotaxis,, J. Theor. Biol., 30 (1971), 225.
doi: 10.1016/0022-5193(71)90050-6. |
[21] |
T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Funct. Anal., 191 (2002), 17.
doi: 10.1006/jfan.2001.3802. |
[22] |
C. Sire and P.-H. Chavanis, Post-collapse dynamics of self-gravitating Brownian particles and bacterial populations,, Phys. Rev. E, 69 (2004). Google Scholar |
[23] |
C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations,, Phys. Rev. E (3), 78 (2008).
doi: 10.1103/PhysRevE.78.061111. |
[24] |
C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, (2003).
doi: 10.1007/b12016. |
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).
|
[2] |
D. Benedetto, E. Caglioti, J. A. Carrillo and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media,, J. Stat. Phys., 91 (1998), 979.
doi: 10.1023/A:1023032000560. |
[3] |
D. Benedetto, E. Caglioti and M. Pulvirenti, A kinetic equation for granular media,, RAIRO Modél. Math. Anal. Numér., 31 (1997), 615.
|
[4] |
P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III,, Colloq. Math., 68 (1995), 229.
|
[5] |
P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I,, Colloq. Math., 66 (1994), 319.
|
[6] |
P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems,, SIAM J. Appl. Math., 59 (1999), 845.
doi: 10.1137/S0036139996313447. |
[7] |
A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model,, SIAM J. Numer. Anal., 46 (2008), 691.
doi: 10.1137/070683337. |
[8] |
A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,, Electron. J. Diff. Eqns., 2006 (2006), 1.
|
[9] |
V. Calvez and J. A. Carrillo, Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities,, Proc. Amer. Math. Soc., 140 (2012), 3515.
doi: 10.1090/S0002-9939-2012-11306-1. |
[10] |
V. Calvez, L. Corrias and A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension,, Comm. Partial Differential Equations, 37 (2012), 561.
doi: 10.1080/03605302.2012.655824. |
[11] |
V. Calvez, B. Perthame and M. Sharifi tabar, Modified Keller-Segel system and critical mass for the log interaction kernel,, in, 429 (2007), 45.
doi: 10.1090/conm/429/08229. |
[12] |
E. Carlen and M. Loss, Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on $\mathbbS^n$,, Geom. Funct. Anal., 2 (1992), 90.
doi: 10.1007/BF01895706. |
[13] |
J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Rat. Mech. Anal., 179 (2006), 217.
doi: 10.1007/s00205-005-0386-1. |
[14] |
J. A. Carrillo and G. Toscani, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations,, in, (2004), 234.
|
[15] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions,, Milan J. Math., 72 (2004), 1.
doi: 10.1007/s00032-003-0026-x. |
[16] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Property of Functions,'', Studies in Advanced Mathematics, (1992).
|
[17] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.
doi: 10.2307/2153966. |
[18] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.
doi: 10.1137/S0036141096303359. |
[19] |
E. F. Keller and L. A. Segel., Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.
doi: 10.1016/0022-5193(70)90092-5. |
[20] |
E. F. Keller and L. A. Segel, Model for chemotaxis,, J. Theor. Biol., 30 (1971), 225.
doi: 10.1016/0022-5193(71)90050-6. |
[21] |
T. Senba and T. Suzuki, Weak solutions to a parabolic-elliptic system of chemotaxis,, J. Funct. Anal., 191 (2002), 17.
doi: 10.1006/jfan.2001.3802. |
[22] |
C. Sire and P.-H. Chavanis, Post-collapse dynamics of self-gravitating Brownian particles and bacterial populations,, Phys. Rev. E, 69 (2004). Google Scholar |
[23] |
C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations,, Phys. Rev. E (3), 78 (2008).
doi: 10.1103/PhysRevE.78.061111. |
[24] |
C. Villani, "Topics in Optimal Transportation,", Graduate Studies in Mathematics, (2003).
doi: 10.1007/b12016. |
[1] |
Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409 |
[2] |
Evgeny Galakhov, Olga Salieva. Blow-up for nonlinear inequalities with gradient terms and singularities on unbounded sets. Conference Publications, 2015, 2015 (special) : 489-494. doi: 10.3934/proc.2015.0489 |
[3] |
Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465 |
[4] |
Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941 |
[5] |
Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299 |
[6] |
Yan Li. Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5461-5480. doi: 10.3934/dcdsb.2019066 |
[7] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[8] |
Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170 |
[9] |
Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 |
[10] |
Philippe Souplet, Juan-Luis Vázquez. Stabilization towards a singular steady state with gradient blow-up for a diffusion-convection problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 221-234. doi: 10.3934/dcds.2006.14.221 |
[11] |
Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096 |
[12] |
C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88 |
[13] |
Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443 |
[14] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[15] |
Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155 |
[16] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[17] |
W. Edward Olmstead, Colleen M. Kirk, Catherine A. Roberts. Blow-up in a subdiffusive medium with advection. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1655-1667. doi: 10.3934/dcds.2010.28.1655 |
[18] |
Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691 |
[19] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[20] |
Juan Dávila, Manuel Del Pino, Catalina Pesce, Juncheng Wei. Blow-up for the 3-dimensional axially symmetric harmonic map flow into $ S^2 $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6913-6943. doi: 10.3934/dcds.2019237 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]