January  2013, 18(1): 209-221. doi: 10.3934/dcdsb.2013.18.209

Time dependent perturbation in a non-autonomous non-classical parabolic equation

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080, Sevilla, Spain

Received  January 2012 Revised  June 2012 Published  September 2012

n this paper we study the existence and characterization of a pullback attractor for a non-autonomous non-classical parabolic equation of the form \begin{equation}\label{EQnoncla} \left\{ \begin{split} &u_t-\gamma(t)\Delta u_t-\Delta u=f(u) \mbox{ in }\Omega,\\ &u=0 \mbox{ on }\partial\Omega \end{split} \right. (1) \end{equation} in a sufficiently smooth bounded domain $\Omega\subset\mathbb R^n$ with $f$ and $\gamma$ satisfying some suitable natural conditions. We prove the well posedness of this model and the existence of a pullback attractor. We show that this pullback attractor is characterized as the union of unstable sets of the associated equilibria and that this characterization is stable under time dependent perturbation of the nonlinearity.
Citation: Felipe Rivero. Time dependent perturbation in a non-autonomous non-classical parabolic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 209-221. doi: 10.3934/dcdsb.2013.18.209
References:
[1]

A. B. Babin and M. I. Vishik, "Attractors of Evolution Equations,'', North-Holland, (1992).

[2]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Analysis, 72 (2010), 1967. doi: 10.1016/j.na.2009.09.037.

[3]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, A gradient-like non-autonomous evolution processes,, Int. Journal of Bifurcation and Chaos, 20 (2010), 2751. doi: 10.1142/S0218127410027337.

[4]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor,, Nonlinear Analysis, 74 (2011), 2272. doi: 10.1016/j.na.2010.11.032.

[5]

A. N. Carvallo and J. W. Cholewa, Local well possed, asymptotic behaviour and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time,, Trans. Amer. Math. Soc., 361 (2009), 2567. doi: 10.1090/S0002-9947-08-04789-2.

[6]

A. N. Carvalho and J. A. Langa, An extension of the concept of gradient systems which is stable under perturbation,, J. Differential Equations, 246 (2009), 2646. doi: 10.1016/j.jde.2009.01.007.

[7]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and unstable manifolds,, J. Differential Equations, 233 (2007), 622. doi: 10.1016/j.jde.2006.08.009.

[8]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Lower semicontinuity of attractors for non-autonomous dynamical systems,, Ergod. Th. & Dynam. Systems, 29 (2009), 1765. doi: 10.1017/S0143385708000850.

[9]

A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed gradient system,, J. Differential Equations, 236 (2007), 570. doi: 10.1016/j.jde.2007.01.017.

[10]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,'', Colloquium Publications 49. American Mathematical Society, (2002).

[11]

J. K. Hale, "Asymptotic Behavior of Dissipative System,'', Mathematical Surveys and Monographs vol. 25, (1989).

[12]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'', Springer-Verlag, (1981).

[13]

P. E. Kloeden and M. Rasmussen, "Nonautonomous Dynamical System,'', Mathematical Surveys and Monographs vol. 176, (2011).

[14]

O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,'', Lezioni Lincee. [Lincei Lectures], (1991).

[15]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Springer-Verlag, (1983).

[16]

J. C. Robinson, "Infinite-Dimensional Dynamical System. An introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,'', Cambridge Text in Applied Mathematics, (2001).

[17]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,'', Applied Mathematical Sciences, (2002).

[18]

Ch. Sun, S. Wang and Ch. Zhong, Global attractors for a nonclassical diffusion equation,, Acta Math. Sin. (Engl. Ser.), 23 (2007), 1271.

[19]

P. E. Sobolevskiĭ, Equations of parabolic type in a Banach space,, Trudy Moskov. Mat. Obšč, 10 (1961), 297.

[20]

R. Temam, "Infinite-Dimensional Dynamical System in Mechanics and Physics,'', Applied Mathematical Sciences 68, (1988).

[21]

S. Wang, D. Li and C. Zhong, On the dynamics of a class of nonclassical parabolic equations,, J. Math. Anal. Appl., 317 (2006), 565.

show all references

References:
[1]

A. B. Babin and M. I. Vishik, "Attractors of Evolution Equations,'', North-Holland, (1992).

[2]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Analysis, 72 (2010), 1967. doi: 10.1016/j.na.2009.09.037.

[3]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, A gradient-like non-autonomous evolution processes,, Int. Journal of Bifurcation and Chaos, 20 (2010), 2751. doi: 10.1142/S0218127410027337.

[4]

T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor,, Nonlinear Analysis, 74 (2011), 2272. doi: 10.1016/j.na.2010.11.032.

[5]

A. N. Carvallo and J. W. Cholewa, Local well possed, asymptotic behaviour and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time,, Trans. Amer. Math. Soc., 361 (2009), 2567. doi: 10.1090/S0002-9947-08-04789-2.

[6]

A. N. Carvalho and J. A. Langa, An extension of the concept of gradient systems which is stable under perturbation,, J. Differential Equations, 246 (2009), 2646. doi: 10.1016/j.jde.2009.01.007.

[7]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and unstable manifolds,, J. Differential Equations, 233 (2007), 622. doi: 10.1016/j.jde.2006.08.009.

[8]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Lower semicontinuity of attractors for non-autonomous dynamical systems,, Ergod. Th. & Dynam. Systems, 29 (2009), 1765. doi: 10.1017/S0143385708000850.

[9]

A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed gradient system,, J. Differential Equations, 236 (2007), 570. doi: 10.1016/j.jde.2007.01.017.

[10]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics,'', Colloquium Publications 49. American Mathematical Society, (2002).

[11]

J. K. Hale, "Asymptotic Behavior of Dissipative System,'', Mathematical Surveys and Monographs vol. 25, (1989).

[12]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'', Springer-Verlag, (1981).

[13]

P. E. Kloeden and M. Rasmussen, "Nonautonomous Dynamical System,'', Mathematical Surveys and Monographs vol. 176, (2011).

[14]

O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,'', Lezioni Lincee. [Lincei Lectures], (1991).

[15]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Springer-Verlag, (1983).

[16]

J. C. Robinson, "Infinite-Dimensional Dynamical System. An introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors,'', Cambridge Text in Applied Mathematics, (2001).

[17]

G. R. Sell and Y. You, "Dynamics of Evolutionary Equations,'', Applied Mathematical Sciences, (2002).

[18]

Ch. Sun, S. Wang and Ch. Zhong, Global attractors for a nonclassical diffusion equation,, Acta Math. Sin. (Engl. Ser.), 23 (2007), 1271.

[19]

P. E. Sobolevskiĭ, Equations of parabolic type in a Banach space,, Trudy Moskov. Mat. Obšč, 10 (1961), 297.

[20]

R. Temam, "Infinite-Dimensional Dynamical System in Mechanics and Physics,'', Applied Mathematical Sciences 68, (1988).

[21]

S. Wang, D. Li and C. Zhong, On the dynamics of a class of nonclassical parabolic equations,, J. Math. Anal. Appl., 317 (2006), 565.

[1]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[2]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[3]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[4]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-14. doi: 10.3934/dcdsb.2019036

[5]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[6]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[7]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[8]

Julia García-Luengo, Pedro Marín-Rubio, José Real, James C. Robinson. Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 203-227. doi: 10.3934/dcds.2014.34.203

[9]

Bo You, Chengkui Zhong, Fang Li. Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1213-1226. doi: 10.3934/dcdsb.2014.19.1213

[10]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

[11]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[12]

Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure & Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885

[13]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[14]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

[15]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[16]

Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028

[17]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[18]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[19]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[20]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]