• Previous Article
    Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates
  • DCDS-B Home
  • This Issue
  • Next Article
    Convergence, non-negativity and stability of a new Milstein scheme with applications to finance
October  2013, 18(8): 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

Bifurcation analysis in a predator-prey model with constant-yield predator harvesting

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China, China

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250

Received  April 2013 Revised  June 2013 Published  July 2013

In this paper we study the effect of constant-yield predator harvesting on the dynamics of a Leslie-Gower type predator-prey model. It is shown that the model has a Bogdanov-Takens singularity (cusp case) of codimension 3 or a weak focus of multiplicity two for some parameter values, respectively. Saddle-node bifurcation, repelling and attracting Bogdanov-Takens bifurcations, supercritical and subcritical Hopf bifurcations, and degenerate Hopf bifurcation are shown as the values of parameters vary. Hence, there are different parameter values for which the model has a homoclinic loop or two limit cycles. It is also proven that there exists a critical harvesting value such that the predator specie goes extinct for all admissible initial densities of both species when the harvest rate is greater than the critical value. These results indicate that the dynamical behavior of the model is very sensitive to the constant-yield predator harvesting and the initial densities of both species and it requires careful management in the applied conservation and renewable resource contexts. Numerical simulations, including the repelling and attracting Bogdanov-Takens bifurcation diagrams and corresponding phase portraits, two limit cycles, the coexistence of a stable homoclinic loop and an unstable limit cycle, and a stable limit cycle enclosing an unstable multiple focus with multiplicity one, are presented which not only support the theoretical analysis but also indicate the existence of Bogdanov-Takens bifurcation (cusp case) of codimension 3. These results reveal far richer and much more complex dynamics compared to the model without harvesting or with only constant-yield prey harvesting.
Citation: Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101
References:
[1]

J. R. Beddington and J. G. Cooke, Harvesting from a prey-predator complex,, Ecol. Modelling, 14 (1982), 155.  doi: 10.1016/0304-3800(82)90016-3.  Google Scholar

[2]

J. R. Beddington and R. M. May, Maximum sustainable yields in systems subject to harvesting at more than one trophic level,, Math. Biosci., 51 (1980), 261.  doi: 10.1016/0025-5564(80)90103-0.  Google Scholar

[3]

R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane,, Trudy Sem. Petrovsk. Vyp., 2 (1976), 23.   Google Scholar

[4]

R. I. Bogdanov, The versal deformations of a singular point on the plane in the case of zero eigenvalues,, Trudy Sem. Petrovsk. Vyp., 2 (1976), 37.   Google Scholar

[5]

F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems,, J. Math. Biol., 7 (1979), 319.  doi: 10.1007/BF00275152.  Google Scholar

[6]

F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting,, J. Math. Biol., 8 (1979), 55.  doi: 10.1007/BF00280586.  Google Scholar

[7]

F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking,, J. Math. Biol., 12 (1981), 101.  doi: 10.1007/BF00275206.  Google Scholar

[8]

L. Cai, G. Chen and D. Xiao, Multiparametric bifurcations of an epidemiological model with strong Allee effect,, J. Math. Biol., 67 (2013), 185.  doi: 10.1007/s00285-012-0546-5.  Google Scholar

[9]

V. Christensen, Managing fisheries involving predator and prey species,, Rev. Fish Biol. Fisher., 6 (1996), 417.  doi: 10.1007/BF00164324.  Google Scholar

[10]

C. W. Clark, "Mathematical Bioeconomics. The Optimal Management of Renewable Resources,", Second edition, (1990).   Google Scholar

[11]

S.-N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields,", Cambridge University Press, (1994).  doi: 10.1017/CBO9780511665639.  Google Scholar

[12]

G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system,, SIAM J. Appl. Math., 58 (1998), 193.  doi: 10.1137/S0036139994275799.  Google Scholar

[13]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3,, Ergodic Theor. Dyn. Syst., 7 (1987), 375.  doi: 10.1017/S0143385700004119.  Google Scholar

[14]

R. M. Etoua and C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III,, J. Differential Equations, 249 (2010), 2316.  doi: 10.1016/j.jde.2010.06.021.  Google Scholar

[15]

O. Flaaten, On the bioeconomics of predator-prey fishing,, Fish. Research, 37 (1998), 179.  doi: 10.1016/S0165-7836(98)00135-0.  Google Scholar

[16]

Y. Gong and J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting,, Acta Math. Appl. Sinica Eng. Ser. (accepted)., ().   Google Scholar

[17]

S. L. Hill, E. J. Murphy, K. Reid, P. N. Trathan and A. J. Constable, Modelling Southern Ocean ecosystems: Krill, the food-web, and the impacts of harvesting,, Biol. Rev., 81 (2006), 581.   Google Scholar

[18]

W. L. Hogarth, J. Norbury, I. Cunning and K. Sommers, Stability of a predator-prey model with harvesting,, Ecol. Modelling, 62 (1992), 83.  doi: 10.1016/0304-3800(92)90083-Q.  Google Scholar

[19]

J. A. Hutchings, Collapse and recovery of marine fishes,, Nature, 406 (2000), 882.   Google Scholar

[20]

J. A. Hutchings and R. A. Myers, What can be learned from the collapse of a renewable resource? Atlantic code, Gadus morhua, of Newfoundland and Labrador,, Can. J. Fish. Aquat. Sci., 51 (1994), 2126.   Google Scholar

[21]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system,, SIAM J. Appl. Math., 55 (1995), 763.  doi: 10.1137/S0036139993253201.  Google Scholar

[22]

Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type III functional response,, J. Dynam. Differential Equations, 20 (2008), 535.  doi: 10.1007/s10884-008-9102-9.  Google Scholar

[23]

B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with nonconstant harvesting,, Discrete Contin. Dynam. Syst. Ser. S, 1 (2008), 303.  doi: 10.3934/dcdss.2008.1.303.  Google Scholar

[24]

R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries,, Science, 205 (1979), 267.  doi: 10.1126/science.205.4403.267.  Google Scholar

[25]

R. A. Myers, J. A. Hutchings and N. J. Barrowman, Why do fish stocks collapse? The example of cod in Atlantic Canada,, Ecol. Appl., 7 (1997), 91.   Google Scholar

[26]

R. A. Myers and B. Worm, Rapid worldwide depletion of large predatory fish communities,, Nature, 423 (2003), 280.   Google Scholar

[27]

M. R. Myerscough, B. F. Gray, W. L. Hograth and J. Norbury, An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking,, J. Math. Biol., 30 (1992), 389.  doi: 10.1007/BF00173294.  Google Scholar

[28]

D. Pauly, Theory and management of tropical multispecies stocks,, ICLARM Stud. Rev., 1 (1979).   Google Scholar

[29]

D. Pauly, et al., Towards sustainability in world fisheries,, Nature, 418 (2002), 689.   Google Scholar

[30]

L. Perko, "Differential Equations and Dynamical Systems,", Second edition, 7 (1996).  doi: 10.1007/978-1-4684-0249-0.  Google Scholar

[31]

F. Takens, Forced oscillations and bifurcation,, in, (1974), 3.   Google Scholar

[32]

Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate,, SIAM J. Appl. Math., 69 (2008), 621.  doi: 10.1137/070700966.  Google Scholar

[33]

D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey with constant rate harvesting,, SIAM J. Appl. Math., 65 (2005), 737.  doi: 10.1137/S0036139903428719.  Google Scholar

[34]

D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting,, in, 21 (1999), 493.   Google Scholar

[35]

P. Yodzis, Predator-prey theory and management of multispecies fisheries,, Ecol. Appl., 4 (1994), 51.  doi: 10.2307/1942114.  Google Scholar

[36]

Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equation,", Transl. Math. Monogr., 101 (1992).   Google Scholar

[37]

C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates,, Discrete Contin. Dynam. Syst. Ser. B, 14 (2010), 289.  doi: 10.3934/dcdsb.2010.14.289.  Google Scholar

[38]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response,, SIAM J. Appl. Math., 63 (2002), 636.  doi: 10.1137/S0036139901397285.  Google Scholar

show all references

References:
[1]

J. R. Beddington and J. G. Cooke, Harvesting from a prey-predator complex,, Ecol. Modelling, 14 (1982), 155.  doi: 10.1016/0304-3800(82)90016-3.  Google Scholar

[2]

J. R. Beddington and R. M. May, Maximum sustainable yields in systems subject to harvesting at more than one trophic level,, Math. Biosci., 51 (1980), 261.  doi: 10.1016/0025-5564(80)90103-0.  Google Scholar

[3]

R. I. Bogdanov, Bifurcations of a limit cycle for a family of vector fields on the plane,, Trudy Sem. Petrovsk. Vyp., 2 (1976), 23.   Google Scholar

[4]

R. I. Bogdanov, The versal deformations of a singular point on the plane in the case of zero eigenvalues,, Trudy Sem. Petrovsk. Vyp., 2 (1976), 37.   Google Scholar

[5]

F. Brauer and A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems,, J. Math. Biol., 7 (1979), 319.  doi: 10.1007/BF00275152.  Google Scholar

[6]

F. Brauer and A. C. Soudack, Stability regions in predator-prey systems with constant-rate prey harvesting,, J. Math. Biol., 8 (1979), 55.  doi: 10.1007/BF00280586.  Google Scholar

[7]

F. Brauer and A. C. Soudack, Coexistence properties of some predator-prey systems under constant rate harvesting and stocking,, J. Math. Biol., 12 (1981), 101.  doi: 10.1007/BF00275206.  Google Scholar

[8]

L. Cai, G. Chen and D. Xiao, Multiparametric bifurcations of an epidemiological model with strong Allee effect,, J. Math. Biol., 67 (2013), 185.  doi: 10.1007/s00285-012-0546-5.  Google Scholar

[9]

V. Christensen, Managing fisheries involving predator and prey species,, Rev. Fish Biol. Fisher., 6 (1996), 417.  doi: 10.1007/BF00164324.  Google Scholar

[10]

C. W. Clark, "Mathematical Bioeconomics. The Optimal Management of Renewable Resources,", Second edition, (1990).   Google Scholar

[11]

S.-N. Chow, C. Li and D. Wang, "Normal Forms and Bifurcation of Planar Vector Fields,", Cambridge University Press, (1994).  doi: 10.1017/CBO9780511665639.  Google Scholar

[12]

G. Dai and M. Tang, Coexistence region and global dynamics of a harvested predator-prey system,, SIAM J. Appl. Math., 58 (1998), 193.  doi: 10.1137/S0036139994275799.  Google Scholar

[13]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3,, Ergodic Theor. Dyn. Syst., 7 (1987), 375.  doi: 10.1017/S0143385700004119.  Google Scholar

[14]

R. M. Etoua and C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III,, J. Differential Equations, 249 (2010), 2316.  doi: 10.1016/j.jde.2010.06.021.  Google Scholar

[15]

O. Flaaten, On the bioeconomics of predator-prey fishing,, Fish. Research, 37 (1998), 179.  doi: 10.1016/S0165-7836(98)00135-0.  Google Scholar

[16]

Y. Gong and J. Huang, Bogdanov-Takens bifurcation in a Leslie-Gower predator-prey model with prey harvesting,, Acta Math. Appl. Sinica Eng. Ser. (accepted)., ().   Google Scholar

[17]

S. L. Hill, E. J. Murphy, K. Reid, P. N. Trathan and A. J. Constable, Modelling Southern Ocean ecosystems: Krill, the food-web, and the impacts of harvesting,, Biol. Rev., 81 (2006), 581.   Google Scholar

[18]

W. L. Hogarth, J. Norbury, I. Cunning and K. Sommers, Stability of a predator-prey model with harvesting,, Ecol. Modelling, 62 (1992), 83.  doi: 10.1016/0304-3800(92)90083-Q.  Google Scholar

[19]

J. A. Hutchings, Collapse and recovery of marine fishes,, Nature, 406 (2000), 882.   Google Scholar

[20]

J. A. Hutchings and R. A. Myers, What can be learned from the collapse of a renewable resource? Atlantic code, Gadus morhua, of Newfoundland and Labrador,, Can. J. Fish. Aquat. Sci., 51 (1994), 2126.   Google Scholar

[21]

S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system,, SIAM J. Appl. Math., 55 (1995), 763.  doi: 10.1137/S0036139993253201.  Google Scholar

[22]

Y. Lamontagne, C. Coutu and C. Rousseau, Bifurcation analysis of a predator-prey system with generalized Holling type III functional response,, J. Dynam. Differential Equations, 20 (2008), 535.  doi: 10.1007/s10884-008-9102-9.  Google Scholar

[23]

B. Leard, C. Lewis and J. Rebaza, Dynamics of ratio-dependent predator-prey models with nonconstant harvesting,, Discrete Contin. Dynam. Syst. Ser. S, 1 (2008), 303.  doi: 10.3934/dcdss.2008.1.303.  Google Scholar

[24]

R. May, J. R. Beddington, C. W. Clark, S. J. Holt and R. M. Laws, Management of multispecies fisheries,, Science, 205 (1979), 267.  doi: 10.1126/science.205.4403.267.  Google Scholar

[25]

R. A. Myers, J. A. Hutchings and N. J. Barrowman, Why do fish stocks collapse? The example of cod in Atlantic Canada,, Ecol. Appl., 7 (1997), 91.   Google Scholar

[26]

R. A. Myers and B. Worm, Rapid worldwide depletion of large predatory fish communities,, Nature, 423 (2003), 280.   Google Scholar

[27]

M. R. Myerscough, B. F. Gray, W. L. Hograth and J. Norbury, An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking,, J. Math. Biol., 30 (1992), 389.  doi: 10.1007/BF00173294.  Google Scholar

[28]

D. Pauly, Theory and management of tropical multispecies stocks,, ICLARM Stud. Rev., 1 (1979).   Google Scholar

[29]

D. Pauly, et al., Towards sustainability in world fisheries,, Nature, 418 (2002), 689.   Google Scholar

[30]

L. Perko, "Differential Equations and Dynamical Systems,", Second edition, 7 (1996).  doi: 10.1007/978-1-4684-0249-0.  Google Scholar

[31]

F. Takens, Forced oscillations and bifurcation,, in, (1974), 3.   Google Scholar

[32]

Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate,, SIAM J. Appl. Math., 69 (2008), 621.  doi: 10.1137/070700966.  Google Scholar

[33]

D. Xiao and L. S. Jennings, Bifurcations of a ratio-dependent predator-prey with constant rate harvesting,, SIAM J. Appl. Math., 65 (2005), 737.  doi: 10.1137/S0036139903428719.  Google Scholar

[34]

D. Xiao and S. Ruan, Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting,, in, 21 (1999), 493.   Google Scholar

[35]

P. Yodzis, Predator-prey theory and management of multispecies fisheries,, Ecol. Appl., 4 (1994), 51.  doi: 10.2307/1942114.  Google Scholar

[36]

Z. Zhang, T. Ding, W. Huang and Z. Dong, "Qualitative Theory of Differential Equation,", Transl. Math. Monogr., 101 (1992).   Google Scholar

[37]

C. R. Zhu and K. Q. Lan, Phase portraits, Hopf bifurcation and limit cycles of Leslie-Gower predator-prey systems with harvesting rates,, Discrete Contin. Dynam. Syst. Ser. B, 14 (2010), 289.  doi: 10.3934/dcdsb.2010.14.289.  Google Scholar

[38]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response,, SIAM J. Appl. Math., 63 (2002), 636.  doi: 10.1137/S0036139901397285.  Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[6]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[9]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[14]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (41)

Other articles
by authors

[Back to Top]