• Previous Article
    Qualitative analysis of an age- and sex-structured vaccination model for human papillomavirus
  • DCDS-B Home
  • This Issue
  • Next Article
    Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates
October  2013, 18(8): 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

A note on global asymptotic stability of nonautonomous master equations

1. 

Lehrstuhl A für Mathematik, RWTH Aachen, D-52056 Aachen, Germany

2. 

Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen

Received  March 2013 Revised  May 2013 Published  July 2013

We present sufficient conditions to either preclude or guarantee global asymptotic stability of linear differential equations for time-dependent $\mathbb W$-matrices. These conditions are concerned with integrability or non-integrability of the matrix entries. The proofs employ differential inequalities.
Citation: Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143
References:
[1]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,", Computer Science and Applied Mathematics, (1979).   Google Scholar

[2]

B. A. Earnshaw and J. P. Keener, Global asymptotic stability of solutions of nonautonomous master equations,, SIAM J. Applied Dynamical Systems, 9 (2010), 220.  doi: 10.1137/090763421.  Google Scholar

[3]

N. G. van Kampen, "Stochastic Processes in Physics and Chemistry,", Lecture Notes in Mathematics, 888 (1981).   Google Scholar

[4]

W. Walter, "Gewöhnliche Differentialgleichungen,", 7. Aufl., (2000).   Google Scholar

show all references

References:
[1]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,", Computer Science and Applied Mathematics, (1979).   Google Scholar

[2]

B. A. Earnshaw and J. P. Keener, Global asymptotic stability of solutions of nonautonomous master equations,, SIAM J. Applied Dynamical Systems, 9 (2010), 220.  doi: 10.1137/090763421.  Google Scholar

[3]

N. G. van Kampen, "Stochastic Processes in Physics and Chemistry,", Lecture Notes in Mathematics, 888 (1981).   Google Scholar

[4]

W. Walter, "Gewöhnliche Differentialgleichungen,", 7. Aufl., (2000).   Google Scholar

[1]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[5]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[6]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[9]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[10]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[11]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[12]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[13]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[14]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[15]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[16]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[17]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[18]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[19]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[20]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]