Citation: |
[1] |
M. Al-arydah and R. J. Smith, An age-structured model of human papillomavirus vaccination, Mathematics and Computers in Simulation, 82 (2011), 629-642.doi: 10.1016/j.matcom.2011.10.006. |
[2] |
R. Barnabas and G. Garnett, The potential public health impact of vaccines against human papillomavirus, in "The Clinical Handbook of Human Papillomavirus" (eds. Prendiville and Davies), Taylor and Francis, (2004), 61-79. |
[3] |
C. Castillo-Chavez and Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math. Biosci., 151 (1998), 135-154.doi: 10.1016/S0025-5564(98)10016-0. |
[4] |
"Genital HPV Infection - CDC Fact Sheet,", Centers for Disease Control and Prevention (CDC). http://www.cdc.gov/std/HPV/STDFact-HPV.htm. |
[5] |
H. W. Chesson, D. U. Ekwueme, M. Saraiya and L. E. Markowitz, Cost-effectiveness of human papillomavirus vaccination in the United States, Emerg. Infect. Dis., 14 (2008), 244-251.doi: 10.3201/eid1402.070499. |
[6] |
M. E. Cruickshank, L. Sharp, G. Chambers, L. Smart and G. Murray, Persistent infection with human papillomavirus following the successful treatment of high grade cervical intraepithelial neoplasia, BJOG, 109 (2002), 579-581. |
[7] |
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation," John Wiley & Sons Ltd., England, 2000. |
[8] |
E. H. Elbasha, E. J. Dasback and R. P. Insinga, Model for assessing human papillomavirus vaccination strategies, Emerg. Infect. Dis., 13 (2007), 28-41.doi: 10.3201/eid1301.060438. |
[9] |
E. H. Elbasha, Global stability of equilibria in a two-sex HPV vaccination model, Bull. Math. Biol., 70 (2008), 894-909.doi: 10.1007/s11538-007-9283-0. |
[10] |
E. H. Elbasha, E. J. Dasbach and R. P. Insinga, A multi-type HPV transmission model, Bull. Math. Biol., 70 (2008), 2126-2176.doi: 10.1007/s11538-008-9338-x. |
[11] |
E. H. Elbasha and E. J. Dasbach, Impact of vaccinating boys and men against HPV in the United States, Vaccine, 28 (2010), 6858-6867.doi: 10.1016/j.vaccine.2010.08.030. |
[12] |
A. Ferenczy, Persistent human papillomavirus infection and cervical neoplasia, The Lancet Oncology, 3 (2002), 11-16.doi: 10.1016/S1470-2045(01)00617-9. |
[13] |
D. Greenhalgh, Threshold and stability results for an epidemic model with an age-structured meeting rate, IMA J. Math. Appl. Med. Biol., 5 (1988), 81-100.doi: 10.1093/imammb/5.2.81. |
[14] |
H. W. Hethcote, Age-structured epdiemiology models and expressions for $R_0$, in "Mathematical Understanding of Infectious Disease Dynamics" (eds. S. Ma and Y. Xia), World Sci. Publ., Hackensack, NJ, (2009), 91-128.doi: 10.1142/9789812834836_0003. |
[15] |
J. Hughes, G. Garnett and L. Koutsky, The theoretical population level impact of a prophylactic human papillomavirus vaccine, Epidemiology, 13 (2002), 631-639. |
[16] |
H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434.doi: 10.1007/BF00178326. |
[17] |
W. Kaplan, "Advanced Calculus," Addison-Wesley Mathematics Series, 1984. |
[18] |
J. J. Kim and S. J. Goldie, Cost effectiveness analysis of including boys in a human papillomavirus vaccination programme in the United States, BMJ, 339 (2009), 1-10.doi: 10.1136/bmj.b3884. |
[19] |
C. J. N. Lacey, C. M. Lowndes and K. V. Shah, Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease, Vaccine, 24 (2006), 35-41.doi: 10.1016/j.vaccine.2006.06.015. |
[20] |
X. Li, G. Gupur and G. Zhu, Threshold and stability results for an age-structured SEIR epidemic model, Comput. Math. Appl., 42 (2001), 883-907.doi: 10.1016/S0898-1221(01)00206-1. |
[21] |
X. Li and J. Liu, Stability of an age-structured epidemiological model for hepatitis C, J. Appl. Math. Comput., 27 (2008), 159-173.doi: 10.1007/s12190-008-0060-5. |
[22] |
X. Li, J. Liu and M. Martcheva, An age-structured two-strain epidemic model with super-infection, Math. Biosci. Engg., 7 (2009), 123-147.doi: 10.3934/mbe.2010.7.123. |
[23] |
A. T. Newall et al., Cost-effectiveness analyses of human papillomavirus vaccination, The Lancet Infectious Diseases, 7 (2007), 289-296. |
[24] |
D. M. Parkin and F. Bray, The burden of HPV-related cancers, Vaccine, 23 (2006), 11-25.doi: 10.1016/j.vaccine.2006.05.111. |
[25] |
D. M. Parkin, The global health burden of infection-associated cancers in the year 2002, Int. J. Cancer, 118 (2006), 3030-3044.doi: 10.1002/ijc.21731. |
[26] |
M. A. Safi et al., Qualitative analysis of an age-structred SEIR epidemic model with treatment, Appl. Math. Comput., 219 (2013), 10627-10642.doi: 10.1016/j.amc.2013.03.126. |
[27] |
N. F. Schlecht et al., Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia, JAMA, 286 (2001), 3106-3114. |
[28] |
L. L. Villa, R. L. R. Costa, C. A. Petta et al., Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: A randomised double-blind placebo-controlled multicentre phase II efficacy trial, Lancet Oncol., 6 (2005), 271-278.doi: 10.1016/S1470-2045(05)70101-7. |
[29] |
L. Zou, S. Ruan and W. Zhang, An age-structured model for the transmission dynamics of Hepatitis B, SIAM J. Appl. Math., 70 (2010), 3121-3139.doi: 10.1137/090777645. |