October  2013, 18(8): 2203-2210. doi: 10.3934/dcdsb.2013.18.2203

Dead-core rates for the heat equation with a spatially dependent strong absorption

1. 

Department of Applied Mathematics, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan

2. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China

Received  September 2011 Revised  September 2012 Published  July 2013

This work is to study the dead-core behavior for a semilinear heat equation with a spatially dependent strong absorption term. We first give a criterion on the initial data such that the dead-core occurs. Then we prove the temporal dead-core rate is non-self-similar. This is based on the standard limiting process with the uniqueness of the self-similar solutions in a certain class.
Citation: Chin-Chin Wu, Zhengce Zhang. Dead-core rates for the heat equation with a spatially dependent strong absorption. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2203-2210. doi: 10.3934/dcdsb.2013.18.2203
References:
[1]

C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption,, SIAM J. Math. Anal., 29 (1998), 1268.  doi: 10.1137/S0036141096311423.  Google Scholar

[2]

C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems,, Trans. Amer. Math. Soc., 286 (1984), 275.  doi: 10.1090/S0002-9947-1984-0756040-1.  Google Scholar

[3]

X. Chen, J.-S. Guo and B. Hu, Dead-core rates for the porous medium equation with a strong absorption,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1761.  doi: 10.3934/dcdsb.2012.17.1761.  Google Scholar

[4]

Q. Chen and L. Wang, On the dead core behavior for a semilinear heat equation,, Math. Appl., 10 (1997), 22.   Google Scholar

[5]

M. S. Floater, Blow-up at the boundary for degenerate semilinear parabolic equations,, Arch. Rational Mech. Anal., 114 (1991), 57.  doi: 10.1007/BF00375685.  Google Scholar

[6]

J.-S. Guo, C.-T. Ling and Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption,, Nonlinearity, 23 (2010), 657.  doi: 10.1088/0951-7715/23/3/013.  Google Scholar

[7]

J.-S. Guo, H. Matano and C.-C. Wu, An application of braid group theory to the finite time dead-core rate,, J. Evol. Equ., 10 (2010), 835.  doi: 10.1007/s00028-010-0072-0.  Google Scholar

[8]

J.-S. Guo and Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, Math. Ann., 331 (2005), 651.  doi: 10.1007/s00208-004-0601-7.  Google Scholar

[9]

J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, Tohoku Math. J. (2), 60 (2008), 37.  doi: 10.2748/tmj/1206734406.  Google Scholar

[10]

H. Ockendon, Channel flow with temperature-dependent viscosity and internal viscous dissipation,, J. Fluid Mech., 93 (1979), 737.  doi: 10.1017/S0022112079002007.  Google Scholar

[11]

Ph. Souplet and F. B. Weissler, Self-similar subsolutions and blowup for nonlinear parabolic equations,, J. Math. Anal. Appl., 212 (1997), 60.  doi: 10.1006/jmaa.1997.5452.  Google Scholar

[12]

I. Stakgold, Reaction-diffusion problems in chemical engineering,, in, 1224 (1986), 119.  doi: 10.1007/BFb0072689.  Google Scholar

show all references

References:
[1]

C. Bandle, T. Nanbu and I. Stakgold, Porous medium equation with absorption,, SIAM J. Math. Anal., 29 (1998), 1268.  doi: 10.1137/S0036141096311423.  Google Scholar

[2]

C. Bandle and I. Stakgold, The formation of the dead core in parabolic reaction-diffusion problems,, Trans. Amer. Math. Soc., 286 (1984), 275.  doi: 10.1090/S0002-9947-1984-0756040-1.  Google Scholar

[3]

X. Chen, J.-S. Guo and B. Hu, Dead-core rates for the porous medium equation with a strong absorption,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1761.  doi: 10.3934/dcdsb.2012.17.1761.  Google Scholar

[4]

Q. Chen and L. Wang, On the dead core behavior for a semilinear heat equation,, Math. Appl., 10 (1997), 22.   Google Scholar

[5]

M. S. Floater, Blow-up at the boundary for degenerate semilinear parabolic equations,, Arch. Rational Mech. Anal., 114 (1991), 57.  doi: 10.1007/BF00375685.  Google Scholar

[6]

J.-S. Guo, C.-T. Ling and Ph. Souplet, Non-self-similar dead-core rate for the fast diffusion equation with strong absorption,, Nonlinearity, 23 (2010), 657.  doi: 10.1088/0951-7715/23/3/013.  Google Scholar

[7]

J.-S. Guo, H. Matano and C.-C. Wu, An application of braid group theory to the finite time dead-core rate,, J. Evol. Equ., 10 (2010), 835.  doi: 10.1007/s00028-010-0072-0.  Google Scholar

[8]

J.-S. Guo and Ph. Souplet, Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up,, Math. Ann., 331 (2005), 651.  doi: 10.1007/s00208-004-0601-7.  Google Scholar

[9]

J.-S. Guo and C.-C. Wu, Finite time dead-core rate for the heat equation with a strong absorption,, Tohoku Math. J. (2), 60 (2008), 37.  doi: 10.2748/tmj/1206734406.  Google Scholar

[10]

H. Ockendon, Channel flow with temperature-dependent viscosity and internal viscous dissipation,, J. Fluid Mech., 93 (1979), 737.  doi: 10.1017/S0022112079002007.  Google Scholar

[11]

Ph. Souplet and F. B. Weissler, Self-similar subsolutions and blowup for nonlinear parabolic equations,, J. Math. Anal. Appl., 212 (1997), 60.  doi: 10.1006/jmaa.1997.5452.  Google Scholar

[12]

I. Stakgold, Reaction-diffusion problems in chemical engineering,, in, 1224 (1986), 119.  doi: 10.1007/BFb0072689.  Google Scholar

[1]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[4]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]