January  2013, 18(1): 223-236. doi: 10.3934/dcdsb.2013.18.223

$\omega$-limit sets for porous medium equation with initial data in some weighted spaces

1. 

School of Math. Stat., Chongqing Three Gorges Univ., Wanzhou 404000, China

2. 

School of Math. Sci., South China Normal Univ., Guangzhou 510631, China, China

Received  May 2012 Revised  August 2012 Published  September 2012

We discuss the $\omega$-limit set for the Cauchy problem of the porous medium equation with initial data in some weighted spaces. Exactly, we show that there exists some relationship between the $\omega$-limit set of the rescaled initial data and the $\omega$-limit set of the spatially rescaled version of solutions. We also give some applications of such a relationship.
Citation: Liangwei Wang, Jingxue Yin, Chunhua Jin. $\omega$-limit sets for porous medium equation with initial data in some weighted spaces. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 223-236. doi: 10.3934/dcdsb.2013.18.223
References:
[1]

S. Kamenomostskaya, The asymptotic behaviour of the solution of the filtration equation,, Israel J. Math., 14 (1973), 76.   Google Scholar

[2]

Ph. Bénilan, "Opérateurs Accrétifs et Semi-Groupes dans les Espaces $L^p$ ($1\leq p \leq\infty$),", France-Japan Seminar, (1976).   Google Scholar

[3]

L. Véron, Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach,, Ann. Fac. Sci. Toulouse, 1 (1979), 171.  doi: 10.5802/afst.535.  Google Scholar

[4]

N. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation,, Indiana Univ. Math. J., 30 (1981), 749.  doi: 10.1512/iumj.1981.30.30056.  Google Scholar

[5]

S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption,, Israel J. Math., 55 (1986), 129.   Google Scholar

[6]

F. Quirós and J. L. Vazquez, Asymptotic behaviour of the porous media equation in an exterior domain,, Ann. Scuola Normale Sup. Pisa, 28 (1999), 183.   Google Scholar

[7]

J. A. Carrillo and K. Fellner, Long-time asymptotics via entropy methods for diffusion dominated equations,, Asymptotic Analysis, 42 (2005), 29.   Google Scholar

[8]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density,, Commun. Pure Appl. Anal., 8 (2009), 493.   Google Scholar

[9]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.   Google Scholar

[10]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation,, Rev. Mat. Iberoamericana, 4 (1988), 339.   Google Scholar

[11]

J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space,, J. Evol. Equ., 3 (2003), 67.   Google Scholar

[12]

N. Alikakos and R. Rostamian, On the uniformization of the solutions of the porous medium equation in $\mathbbR^N$,, IsraelJ. Math., 47 (1984), 270.   Google Scholar

[13]

J. L. Vázquez and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data,, Chin. Ann. Math. Ser. B, 23 (2002), 293.   Google Scholar

[14]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the heat equation on $\mathbbR^N$,, Discrete Contin. Dyn. Sys., 9 (2003), 1105.   Google Scholar

[15]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of a nonlinear heat equation on $\mathbbR^N$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2003), 77.   Google Scholar

[16]

T. Cazenave, F. Dickstein and F. B. Weissler, Chaotic behavior of solutions of the Navier-Stokes system in $\mathbbR^N$,, Adv. Differ. Equations, 10 (2005), 361.   Google Scholar

[17]

J. A. Carrillo and J. L. Vázquez, Asymptotic complexity infiltration equations,, J. Evol. Equ., 7 (2007), 471.   Google Scholar

[18]

T. Cazenave, F. Dickstein and F. B. Weissler, Nonparabolic asymptotic limits of solutions of the heat equation on$\mathbbR^N$,, J. Dyn. Diff. Eqns., 19 (2007), 789.   Google Scholar

[19]

J. X. Yin, L. W. Wang and R. Huang, Complexity of asymptotic behavior of solutions for the porous medium equations,, Acta Mathematica Scientia, 30 (2010), 1865.   Google Scholar

[20]

J. X. Yin, L. W. Wang and R. Huang, Complexity of a symptotic behavior of the porous medium equation in $\mathbbR^N$,, J. Evol. Equ., 11 (2011), 429.  doi: 10.1007/s00028-010-0097-4.  Google Scholar

[21]

E. DiBenedetto, Continuity of weak solutions to ageneral porous media equation,, Indiana Univ. Math. J., 32 (1983), 83.   Google Scholar

[22]

P. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porousmedium in $\mathbbR^N$ under optimal conditions on the initialvalues,, Indiana Univ. Math. J., 33 (1984), 51.   Google Scholar

[23]

E. DiBenedetto, "Degenerate Parabolic Equations,", New York, (1993).   Google Scholar

[24]

J. L. Vázquez, "The Porous Medium Equation: MathematicalTheory, Oxford Mathematical Monographs,", Oxford/New York, (2008).   Google Scholar

[25]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Parabolic Equations: Equations of Porous Medium Type,", Oxford University Press, (2006).   Google Scholar

[26]

L. A. Caffarelli, J. L. Vázquez and N. I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation,, Indiana Univ. Math. J., 33 (1984), 51.   Google Scholar

[27]

J. N. Zhao and H. J. Yuan, Lipschitz continuity of solutions and interfaces of the evolution $p$-Laplacian equation,, Northeast. Math. J., 8 (1992), 21.   Google Scholar

[28]

T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler, Self-similar solutions of a nonlinear heat equation,, J. Math. Sci. Univ. Tokyo, 8 (2001), 501.   Google Scholar

show all references

References:
[1]

S. Kamenomostskaya, The asymptotic behaviour of the solution of the filtration equation,, Israel J. Math., 14 (1973), 76.   Google Scholar

[2]

Ph. Bénilan, "Opérateurs Accrétifs et Semi-Groupes dans les Espaces $L^p$ ($1\leq p \leq\infty$),", France-Japan Seminar, (1976).   Google Scholar

[3]

L. Véron, Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach,, Ann. Fac. Sci. Toulouse, 1 (1979), 171.  doi: 10.5802/afst.535.  Google Scholar

[4]

N. Alikakos and R. Rostamian, Large time behavior of solutions of Neumann boundary value problem for the porous medium equation,, Indiana Univ. Math. J., 30 (1981), 749.  doi: 10.1512/iumj.1981.30.30056.  Google Scholar

[5]

S. Kamin and L. A. Peletier, Large time behaviour of solutions of the porous media equation with absorption,, Israel J. Math., 55 (1986), 129.   Google Scholar

[6]

F. Quirós and J. L. Vazquez, Asymptotic behaviour of the porous media equation in an exterior domain,, Ann. Scuola Normale Sup. Pisa, 28 (1999), 183.   Google Scholar

[7]

J. A. Carrillo and K. Fellner, Long-time asymptotics via entropy methods for diffusion dominated equations,, Asymptotic Analysis, 42 (2005), 29.   Google Scholar

[8]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density,, Commun. Pure Appl. Anal., 8 (2009), 493.   Google Scholar

[9]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an N-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.   Google Scholar

[10]

S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the p-Laplacian equation,, Rev. Mat. Iberoamericana, 4 (1988), 339.   Google Scholar

[11]

J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space,, J. Evol. Equ., 3 (2003), 67.   Google Scholar

[12]

N. Alikakos and R. Rostamian, On the uniformization of the solutions of the porous medium equation in $\mathbbR^N$,, IsraelJ. Math., 47 (1984), 270.   Google Scholar

[13]

J. L. Vázquez and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data,, Chin. Ann. Math. Ser. B, 23 (2002), 293.   Google Scholar

[14]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the heat equation on $\mathbbR^N$,, Discrete Contin. Dyn. Sys., 9 (2003), 1105.   Google Scholar

[15]

T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of a nonlinear heat equation on $\mathbbR^N$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (2003), 77.   Google Scholar

[16]

T. Cazenave, F. Dickstein and F. B. Weissler, Chaotic behavior of solutions of the Navier-Stokes system in $\mathbbR^N$,, Adv. Differ. Equations, 10 (2005), 361.   Google Scholar

[17]

J. A. Carrillo and J. L. Vázquez, Asymptotic complexity infiltration equations,, J. Evol. Equ., 7 (2007), 471.   Google Scholar

[18]

T. Cazenave, F. Dickstein and F. B. Weissler, Nonparabolic asymptotic limits of solutions of the heat equation on$\mathbbR^N$,, J. Dyn. Diff. Eqns., 19 (2007), 789.   Google Scholar

[19]

J. X. Yin, L. W. Wang and R. Huang, Complexity of asymptotic behavior of solutions for the porous medium equations,, Acta Mathematica Scientia, 30 (2010), 1865.   Google Scholar

[20]

J. X. Yin, L. W. Wang and R. Huang, Complexity of a symptotic behavior of the porous medium equation in $\mathbbR^N$,, J. Evol. Equ., 11 (2011), 429.  doi: 10.1007/s00028-010-0097-4.  Google Scholar

[21]

E. DiBenedetto, Continuity of weak solutions to ageneral porous media equation,, Indiana Univ. Math. J., 32 (1983), 83.   Google Scholar

[22]

P. Bénilan, M. G. Crandall and M. Pierre, Solutions of the porousmedium in $\mathbbR^N$ under optimal conditions on the initialvalues,, Indiana Univ. Math. J., 33 (1984), 51.   Google Scholar

[23]

E. DiBenedetto, "Degenerate Parabolic Equations,", New York, (1993).   Google Scholar

[24]

J. L. Vázquez, "The Porous Medium Equation: MathematicalTheory, Oxford Mathematical Monographs,", Oxford/New York, (2008).   Google Scholar

[25]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Parabolic Equations: Equations of Porous Medium Type,", Oxford University Press, (2006).   Google Scholar

[26]

L. A. Caffarelli, J. L. Vázquez and N. I. Wolanski, Lipschitz continuity of solutions and interfaces of the N-dimensional porous medium equation,, Indiana Univ. Math. J., 33 (1984), 51.   Google Scholar

[27]

J. N. Zhao and H. J. Yuan, Lipschitz continuity of solutions and interfaces of the evolution $p$-Laplacian equation,, Northeast. Math. J., 8 (1992), 21.   Google Scholar

[28]

T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler, Self-similar solutions of a nonlinear heat equation,, J. Math. Sci. Univ. Tokyo, 8 (2001), 501.   Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[10]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]