November  2013, 18(9): 2267-2282. doi: 10.3934/dcdsb.2013.18.2267

Evolutionary branching patterns in predator-prey structured populations

1. 

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino

Received  November 2012 Revised  July 2013 Published  September 2013

Predator-prey ecosystems represent, among others, a natural context where evolutionary branching patterns may arise. Moving from this observation, the paper deals with a class of integro-differential equations modeling the dynamics of two populations structured by a continuous phenotypic trait and related by predation. Predators and preys proliferate through asexual reproduction, compete for resources and undergo phenotypic changes. A positive parameter $\varepsilon$ is introduced to model the average size of such changes. The asymptotic behavior of the solution of the mathematical problem linked to the model is studied in the limit $\varepsilon \rightarrow 0$ (i.e., in the limit of small phenotypic changes). Analytical results are illustrated and extended by means of numerical simulations with the aim of showing how the present class of equations can mimic the formation of evolutionary branching patterns. All simulations highlight a chase-escape dynamics, where the preys try to evade predation while predators mimic, with a certain delay, the phenotypic profile of the preys.
Citation: Marcello Delitala, Tommaso Lorenzi. Evolutionary branching patterns in predator-prey structured populations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2267-2282. doi: 10.3934/dcdsb.2013.18.2267
References:
[1]

V. Andasari, A. Gerisch, G. Lolas, A. P. South and M. A. J. Chaplain, Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation,, Journal of Mathematical Biology, 63 (2011), 141. doi: 10.1007/s00285-010-0369-1. Google Scholar

[2]

F. Cerretti, B. Perthame, C. Schmeiser, M. Tang and N. Vauchelet, Branching instabilities in Hyperbolic Keller-Segel systems,, Math. Models Methods Appl. Sci., 21 (2011), 825. Google Scholar

[3]

D. Challet, M. Marsili and Y. C. Zhang, "Minority Games: Interacting Agents in Financial Markets,", Oxford Finance, (2005). Google Scholar

[4]

M. Delitala and T. Lorenzi, Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism,, Journal of Mathematical Analysis and Applications, 389 (2012), 439. doi: 10.1016/j.jmaa.2011.11.076. Google Scholar

[5]

M. Delitala and T. Lorenzi, Recognition and learning in a mathematical model for immune response against cancer,, Discrete and Continuous Dynamical Systems - Series B, (). doi: 10.3934/dcdsb.2013.18.891. Google Scholar

[6]

L. Desvillettes, P. E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations,, Communications in Mathematical Sciences, 6 (2008), 729. doi: 10.4310/CMS.2008.v6.n3.a10. Google Scholar

[7]

O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach,, Theoretical Population Biology, 67 (2005), 257. doi: 10.1016/j.tpb.2004.12.003. Google Scholar

[8]

M. Gauduchon and B. Perthame, Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations,, Mathematical Medicine and Biology, 27 (2010), 195. doi: 10.1093/imammb/dqp018. Google Scholar

[9]

S. Genieys, V. Volpert and P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of resources,, Mathematical Modelling of Natural Phenomena, 1 (2006), 65. doi: 10.1051/mmnp:2006004. Google Scholar

[10]

S. A. H. Geritz, E. Kisdi, G. Meszena, J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree,, Evol. Ecol., 12 (1998), 35. Google Scholar

[11]

S. A. H. Geritz, J. A. J.Metz, E. Kisdi and G. Meszena, Dynamics of adaptation and evolutionary branching,, Phys. Rev. Lett., 78 (1997), 2024. doi: 10.1103/PhysRevLett.78.2024. Google Scholar

[12]

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation,, Cell, 144 (2011), 646. doi: 10.1016/j.cell.2011.02.013. Google Scholar

[13]

A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations,, Communications in Partial Differential Equations, 36 (2011), 1071. doi: 10.1080/03605302.2010.538784. Google Scholar

[14]

J. Maynard Smith, "Evolution and the Theory of Games,", Cambridge University Press, (1982). Google Scholar

[15]

S. Mirrahimi, B. Perthame and J. Wakano, Evolution of species trait through resource competition,, Journal of Mathematical Biology, 64 (2012), 1189. doi: 10.1007/s00285-011-0447-z. Google Scholar

[16]

G. Naldi, L. Pareschi and G. Toscani (Eds.), "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences,", Birkhäuser, (2010). doi: 10.1007/978-0-8176-4946-3. Google Scholar

[17]

J. C. Nuno, M. Primicerio and M. A. Herrero, A mathematical model of a criminal-prone society,, DCDS-S, 4 (2011), 193. doi: 10.3934/dcdss.2011.4.193. Google Scholar

[18]

K. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model,, Physica D: Nonlinear Phenomena, 240 (2011), 363. doi: 10.1016/j.physd.2010.09.011. Google Scholar

[19]

B. Perthame, "Transport Equations in Biology,", Birkhäuser, (2007). Google Scholar

[20]

V. Quaranta, K. A. Rejniak, P. Gerlee and A. R. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models,, Seminars in Cancer Biology, 18 (2008), 338. doi: 10.1016/j.semcancer.2008.03.018. Google Scholar

[21]

V. Semeshenko, M. B. Gordon and J. P. Nadal, Collective states in social systems with interacting learning agents,, Physica A: Statistical Mechanics and its Applications, 387 (2008), 4903. doi: 10.1016/j.physa.2008.04.019. Google Scholar

[22]

Z. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model,, Chaos, 17 (2007). doi: 10.1063/1.2766864. Google Scholar

show all references

References:
[1]

V. Andasari, A. Gerisch, G. Lolas, A. P. South and M. A. J. Chaplain, Mathematical modeling of cancer cell invasion of tissue: Biological insight from mathematical analysis and computational simulation,, Journal of Mathematical Biology, 63 (2011), 141. doi: 10.1007/s00285-010-0369-1. Google Scholar

[2]

F. Cerretti, B. Perthame, C. Schmeiser, M. Tang and N. Vauchelet, Branching instabilities in Hyperbolic Keller-Segel systems,, Math. Models Methods Appl. Sci., 21 (2011), 825. Google Scholar

[3]

D. Challet, M. Marsili and Y. C. Zhang, "Minority Games: Interacting Agents in Financial Markets,", Oxford Finance, (2005). Google Scholar

[4]

M. Delitala and T. Lorenzi, Asymptotic dynamics in continuous structured populations with mutations, competition and mutualism,, Journal of Mathematical Analysis and Applications, 389 (2012), 439. doi: 10.1016/j.jmaa.2011.11.076. Google Scholar

[5]

M. Delitala and T. Lorenzi, Recognition and learning in a mathematical model for immune response against cancer,, Discrete and Continuous Dynamical Systems - Series B, (). doi: 10.3934/dcdsb.2013.18.891. Google Scholar

[6]

L. Desvillettes, P. E. Jabin, S. Mischler and G. Raoul, On selection dynamics for continuous structured populations,, Communications in Mathematical Sciences, 6 (2008), 729. doi: 10.4310/CMS.2008.v6.n3.a10. Google Scholar

[7]

O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach,, Theoretical Population Biology, 67 (2005), 257. doi: 10.1016/j.tpb.2004.12.003. Google Scholar

[8]

M. Gauduchon and B. Perthame, Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations,, Mathematical Medicine and Biology, 27 (2010), 195. doi: 10.1093/imammb/dqp018. Google Scholar

[9]

S. Genieys, V. Volpert and P. Auger, Pattern and waves for a model in population dynamics with nonlocal consumption of resources,, Mathematical Modelling of Natural Phenomena, 1 (2006), 65. doi: 10.1051/mmnp:2006004. Google Scholar

[10]

S. A. H. Geritz, E. Kisdi, G. Meszena, J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree,, Evol. Ecol., 12 (1998), 35. Google Scholar

[11]

S. A. H. Geritz, J. A. J.Metz, E. Kisdi and G. Meszena, Dynamics of adaptation and evolutionary branching,, Phys. Rev. Lett., 78 (1997), 2024. doi: 10.1103/PhysRevLett.78.2024. Google Scholar

[12]

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation,, Cell, 144 (2011), 646. doi: 10.1016/j.cell.2011.02.013. Google Scholar

[13]

A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations,, Communications in Partial Differential Equations, 36 (2011), 1071. doi: 10.1080/03605302.2010.538784. Google Scholar

[14]

J. Maynard Smith, "Evolution and the Theory of Games,", Cambridge University Press, (1982). Google Scholar

[15]

S. Mirrahimi, B. Perthame and J. Wakano, Evolution of species trait through resource competition,, Journal of Mathematical Biology, 64 (2012), 1189. doi: 10.1007/s00285-011-0447-z. Google Scholar

[16]

G. Naldi, L. Pareschi and G. Toscani (Eds.), "Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences,", Birkhäuser, (2010). doi: 10.1007/978-0-8176-4946-3. Google Scholar

[17]

J. C. Nuno, M. Primicerio and M. A. Herrero, A mathematical model of a criminal-prone society,, DCDS-S, 4 (2011), 193. doi: 10.3934/dcdss.2011.4.193. Google Scholar

[18]

K. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model,, Physica D: Nonlinear Phenomena, 240 (2011), 363. doi: 10.1016/j.physd.2010.09.011. Google Scholar

[19]

B. Perthame, "Transport Equations in Biology,", Birkhäuser, (2007). Google Scholar

[20]

V. Quaranta, K. A. Rejniak, P. Gerlee and A. R. Anderson, Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models,, Seminars in Cancer Biology, 18 (2008), 338. doi: 10.1016/j.semcancer.2008.03.018. Google Scholar

[21]

V. Semeshenko, M. B. Gordon and J. P. Nadal, Collective states in social systems with interacting learning agents,, Physica A: Statistical Mechanics and its Applications, 387 (2008), 4903. doi: 10.1016/j.physa.2008.04.019. Google Scholar

[22]

Z. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model,, Chaos, 17 (2007). doi: 10.1063/1.2766864. Google Scholar

[1]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[2]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[3]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[4]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[5]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[6]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[7]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[8]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[9]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[10]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[11]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[12]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[13]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[14]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[15]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[16]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[17]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[18]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[19]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[20]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]