Citation: |
[1] |
R. A. Armstrong and R. McGehee, Competitive exclusion, The American Naturalist, 115 (1980), 151-170.doi: 10.1086/283553. |
[2] |
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, Journal of Animal Ecology, 44 (1975), 331-340.doi: 10.2307/3866. |
[3] |
G. J. Butler and P. Waltman, Persistence in dynamical systems, Journal of Differential Equations, 63 (1986), 255-263.doi: 10.1016/0022-0396(86)90049-5. |
[4] |
G. J. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems, Proceedings of the American Mathematical Society, 96 (1986), 425-430.doi: 10.1090/S0002-9939-1986-0822433-4. |
[5] |
G. J. Butler and P. Waltman, Bifurcation from a limit cycle in a two predator-one prey ecosystem modeled on a chemostat, Journal of Mathematical Biology, 12 (1981), 295-310.doi: 10.1007/BF00276918. |
[6] |
R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 257 (2001), 206-222.doi: 10.1006/jmaa.2000.7343. |
[7] |
R. S. Cantrell, C. Cosner and S. Ruan, Intraspecific interference and consumer-resource dynamics, Discrete and Continuous Dynamical Systems - B, 4 (2004), 527-546.doi: 10.3934/dcdsb.2004.4.527. |
[8] |
D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892.doi: 10.2307/1936298. |
[9] |
H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, Journal of Dynamics and Differential Equations, 6 (1994), 583-600.doi: 10.1007/BF02218848. |
[10] |
S. B. Hsu, Limiting behavior for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.doi: 10.1137/0134064. |
[11] |
S. B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology, Taiwanese Journal of Mathematics, 9 (2005), 151-173. |
[12] |
S. B. Hsu, S. Hubbell, and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.doi: 10.1137/0132030. |
[13] |
S. B. Hsu, S. P. Hubbell and P. Waltman, A contribution to the theory of competing predators, Ecological Monographs, 48 (1978), 337-349. |
[14] |
S. B. Hsu, S. P. Hubbell and P. Waltman, Competing predators, SIAM Journal on Applied Mathematics, 35 (1978), 617-625.doi: 10.1137/0135051. |
[15] |
G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response, Journal of Theoretical Biology, 185 (1997), 389-400.doi: 10.1006/jtbi.1996.0318. |
[16] |
T.-W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 281 (2003), 395-401.doi: 10.1016/S0022-247X(02)00395-5. |
[17] |
T.-W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 290 (2004), 113-122.doi: 10.1016/j.jmaa.2003.09.073. |
[18] |
J. P. Keener, Oscillatory coexistence in the chemostat: A codimension two unfolding, SIAM Journal on Applied Mathematics, 43 (1983), 1005-1018.doi: 10.1137/0143066. |
[19] |
W. Liu, D. Xiao and Y. Yi, Relaxation oscillations in a class of predator-prey systems, Journal of Differential Equations, 188 (2003), 306-331.doi: 10.1016/S0022-0396(02)00076-1. |
[20] |
S. Muratori and S. Rinaldi, Remarks on competitive coexistence, SIAM Journal on Applied Mathematics, 49 (1989), 1462-1472.doi: 10.1137/0149088. |
[21] |
H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model, SIAM Journal on Applied Mathematics, 42 (1982), 27-43.doi: 10.1137/0142003. |
[22] |
H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence," Vol. 118 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2011. |