\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response

Abstract Related Papers Cited by
  • In this paper we study a two-consumers-one-resource competing system with Beddington-DeAngelis functional response. The two consumers competing for a renewable resource have intraspecific competition among their own populations. Firstly we investigate the extinction and uniform persistence of the predators, local and global stability of the equilibria, and existence of Hopf bifurcation at the positive equilibrium. Then we compare the dynamic behavior of the system with and without interference effects. Analytically we study the competition of two identically species with different interference effects. We also study the relaxation oscillation in the case of interference effects. Finally we present extensive numerical simulations to understand the interference effects on the competition outcomes.
    Mathematics Subject Classification: Primary: 37N25, 92D25, 92D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Armstrong and R. McGehee, Competitive exclusion, The American Naturalist, 115 (1980), 151-170.doi: 10.1086/283553.

    [2]

    J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, Journal of Animal Ecology, 44 (1975), 331-340.doi: 10.2307/3866.

    [3]

    G. J. Butler and P. Waltman, Persistence in dynamical systems, Journal of Differential Equations, 63 (1986), 255-263.doi: 10.1016/0022-0396(86)90049-5.

    [4]

    G. J. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems, Proceedings of the American Mathematical Society, 96 (1986), 425-430.doi: 10.1090/S0002-9939-1986-0822433-4.

    [5]

    G. J. Butler and P. Waltman, Bifurcation from a limit cycle in a two predator-one prey ecosystem modeled on a chemostat, Journal of Mathematical Biology, 12 (1981), 295-310.doi: 10.1007/BF00276918.

    [6]

    R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 257 (2001), 206-222.doi: 10.1006/jmaa.2000.7343.

    [7]

    R. S. Cantrell, C. Cosner and S. Ruan, Intraspecific interference and consumer-resource dynamics, Discrete and Continuous Dynamical Systems - B, 4 (2004), 527-546.doi: 10.3934/dcdsb.2004.4.527.

    [8]

    D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892.doi: 10.2307/1936298.

    [9]

    H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, Journal of Dynamics and Differential Equations, 6 (1994), 583-600.doi: 10.1007/BF02218848.

    [10]

    S. B. Hsu, Limiting behavior for competing species, SIAM Journal on Applied Mathematics, 34 (1978), 760-763.doi: 10.1137/0134064.

    [11]

    S. B. Hsu, A survey of constructing Lyapunov functions for mathematical models in population biology, Taiwanese Journal of Mathematics, 9 (2005), 151-173.

    [12]

    S. B. Hsu, S. Hubbell, and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM Journal on Applied Mathematics, 32 (1977), 366-383.doi: 10.1137/0132030.

    [13]

    S. B. Hsu, S. P. Hubbell and P. Waltman, A contribution to the theory of competing predators, Ecological Monographs, 48 (1978), 337-349.

    [14]

    S. B. Hsu, S. P. Hubbell and P. Waltman, Competing predators, SIAM Journal on Applied Mathematics, 35 (1978), 617-625.doi: 10.1137/0135051.

    [15]

    G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response, Journal of Theoretical Biology, 185 (1997), 389-400.doi: 10.1006/jtbi.1996.0318.

    [16]

    T.-W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 281 (2003), 395-401.doi: 10.1016/S0022-247X(02)00395-5.

    [17]

    T.-W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 290 (2004), 113-122.doi: 10.1016/j.jmaa.2003.09.073.

    [18]

    J. P. Keener, Oscillatory coexistence in the chemostat: A codimension two unfolding, SIAM Journal on Applied Mathematics, 43 (1983), 1005-1018.doi: 10.1137/0143066.

    [19]

    W. Liu, D. Xiao and Y. Yi, Relaxation oscillations in a class of predator-prey systems, Journal of Differential Equations, 188 (2003), 306-331.doi: 10.1016/S0022-0396(02)00076-1.

    [20]

    S. Muratori and S. Rinaldi, Remarks on competitive coexistence, SIAM Journal on Applied Mathematics, 49 (1989), 1462-1472.doi: 10.1137/0149088.

    [21]

    H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model, SIAM Journal on Applied Mathematics, 42 (1982), 27-43.doi: 10.1137/0142003.

    [22]

    H. L. Smith and H. R. Thieme, "Dynamical Systems and Population Persistence," Vol. 118 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2011.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return