
Previous Article
Global dynamics and bifurcations in a fourdimensional replicator system
 DCDSB Home
 This Issue

Next Article
$\omega$limit sets for porous medium equation with initial data in some weighted spaces
On the multiple spike solutions for singularly perturbed elliptic systems
1.  Department of Mathematics, National Taiwan University, Taipei 106, Taiwan 
2.  Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan 
References:
[1] 
S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $\Delta u + u=a(x)u^p+f(x)$ in $\mathbbR^N$, Calc. Var. Partial Diff. Eqns., 11 (2000), 6395. doi: 10.1007/s005260050003. 
[2] 
A. Ambrosetti, "Critical Points and Nonlinear Variational Problems," Bulletin Soc. Math. France, Mémoire, 1992. 
[3] 
A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrodinger equations, Journal of the London Mathematical Society, 75 (2007), 6782. 
[4] 
T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2nodal solutions of a semiclassical nonlinear Schrödinger equation, Mathematische Annalen, 388 (2007), 147185. 
[5] 
T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259281. 
[6] 
G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257281. 
[7] 
E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, Journal of differential equations, 74 (1988), 120156. 
[8] 
D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems, Ann. I. H. PoincaréAN, 25 (2008), 149161. 
[9] 
N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system, NoDEA: Nonlinear Differential Equations and Applications, 16 (2009), 555567. 
[10] 
M. K. Kwong, Uniqueness of positive solution of $\Delta uu+u^p=0$ in $\mathbbR^N$, Arch. Rat. Math. Anal., 105 (1989), 243266. 
[11] 
P. L. Lions, The concentrationcompactness principle in the calculus of variations. The local compact case I, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 102145. 
[12] 
P. L. Lions, The concentrationcompactness principle in the calculus of variations. The local compact case II, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 223283. 
[13] 
W. C. Lien, S. Y. Tzeng and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, Differential Integral Equations, 6 (1993), 12811298. 
[14] 
T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. I. H. PoincaréAN, 22 (2005), 403439. 
[15] 
P. E. Merilees, The pseudospectral approximation applied to the shallow water equations on a sphere, Atmosphere, 11 (1973), 1320. 
[16] 
E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10 (2008), 4771. 
[17] 
Z. Nehari, On a class of nonlinear secondorder differential equations, Trans. Am. Math. Soc., 95 (1960), 101123. doi: 10.1090/S00029947196001118988. 
[18] 
A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, Journal of Differential Equations, 227 (2006), 258281. 
[19] 
H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain, Nonlinear Differential Equations Appl., 11 (2004), 361377. doi: 10.1007/s0003000420082. 
show all references
References:
[1] 
S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $\Delta u + u=a(x)u^p+f(x)$ in $\mathbbR^N$, Calc. Var. Partial Diff. Eqns., 11 (2000), 6395. doi: 10.1007/s005260050003. 
[2] 
A. Ambrosetti, "Critical Points and Nonlinear Variational Problems," Bulletin Soc. Math. France, Mémoire, 1992. 
[3] 
A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrodinger equations, Journal of the London Mathematical Society, 75 (2007), 6782. 
[4] 
T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2nodal solutions of a semiclassical nonlinear Schrödinger equation, Mathematische Annalen, 388 (2007), 147185. 
[5] 
T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259281. 
[6] 
G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257281. 
[7] 
E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, Journal of differential equations, 74 (1988), 120156. 
[8] 
D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems, Ann. I. H. PoincaréAN, 25 (2008), 149161. 
[9] 
N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system, NoDEA: Nonlinear Differential Equations and Applications, 16 (2009), 555567. 
[10] 
M. K. Kwong, Uniqueness of positive solution of $\Delta uu+u^p=0$ in $\mathbbR^N$, Arch. Rat. Math. Anal., 105 (1989), 243266. 
[11] 
P. L. Lions, The concentrationcompactness principle in the calculus of variations. The local compact case I, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 102145. 
[12] 
P. L. Lions, The concentrationcompactness principle in the calculus of variations. The local compact case II, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 223283. 
[13] 
W. C. Lien, S. Y. Tzeng and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, Differential Integral Equations, 6 (1993), 12811298. 
[14] 
T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. I. H. PoincaréAN, 22 (2005), 403439. 
[15] 
P. E. Merilees, The pseudospectral approximation applied to the shallow water equations on a sphere, Atmosphere, 11 (1973), 1320. 
[16] 
E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10 (2008), 4771. 
[17] 
Z. Nehari, On a class of nonlinear secondorder differential equations, Trans. Am. Math. Soc., 95 (1960), 101123. doi: 10.1090/S00029947196001118988. 
[18] 
A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, Journal of Differential Equations, 227 (2006), 258281. 
[19] 
H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain, Nonlinear Differential Equations Appl., 11 (2004), 361377. doi: 10.1007/s0003000420082. 
[1] 
Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (4) : 12851308. doi: 10.3934/cpaa.2016.15.1285 
[2] 
Farid Bozorgnia, Martin Burger, Morteza Fotouhi. On a class of singularly perturbed elliptic systems with asymptotic phase segregation. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022023 
[3] 
Andrés Ávila, Louis Jeanjean. A result on singularly perturbed elliptic problems. Communications on Pure and Applied Analysis, 2005, 4 (2) : 341356. doi: 10.3934/cpaa.2005.4.341 
[4] 
Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete and Continuous Dynamical Systems  B, 2008, 9 (3&4, May) : 431461. doi: 10.3934/dcdsb.2008.9.431 
[5] 
Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure and Applied Analysis, 2018, 17 (5) : 20632084. doi: 10.3934/cpaa.2018098 
[6] 
Bernhard Ruf, P. N. Srikanth. Hopf fibration and singularly perturbed elliptic equations. Discrete and Continuous Dynamical Systems  S, 2014, 7 (4) : 823838. doi: 10.3934/dcdss.2014.7.823 
[7] 
Marco Ghimenti, Anna Maria Micheletti, Angela Pistoia. The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 25352560. doi: 10.3934/dcds.2014.34.2535 
[8] 
Valentin Butuzov, Nikolay Nefedov, Oleh Omel'chenko, Lutz Recke. Boundary layer solutions to singularly perturbed quasilinear systems. Discrete and Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021226 
[9] 
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 307320. doi: 10.3934/naco.2020027 
[10] 
Flaviano Battelli, Ken Palmer. Transversal periodictoperiodic homoclinic orbits in singularly perturbed systems. Discrete and Continuous Dynamical Systems  B, 2010, 14 (2) : 367387. doi: 10.3934/dcdsb.2010.14.367 
[11] 
Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a onedimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete and Continuous Dynamical Systems  B, 2012, 17 (1) : 131. doi: 10.3934/dcdsb.2012.17.1 
[12] 
Marco Ghimenti, A. M. Micheletti. Non degeneracy for solutions of singularly perturbed nonlinear elliptic problems on symmetric Riemannian manifolds. Communications on Pure and Applied Analysis, 2013, 12 (2) : 679693. doi: 10.3934/cpaa.2013.12.679 
[13] 
Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 22612281. doi: 10.3934/cpaa.2018108 
[14] 
Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 30853108. doi: 10.3934/dcds.2013.33.3085 
[15] 
Lei Liu, Shaoying Lu, Cunwu Han, Chao Li, Zejin Feng. Fault estimation and optimization for uncertain disturbed singularly perturbed systems with timedelay. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 367379. doi: 10.3934/naco.2020008 
[16] 
Ahmed Bonfoh, Ibrahim A. Suleman. Robust exponential attractors for singularly perturbed conserved phasefield systems with no growth assumption on the nonlinear term. Communications on Pure and Applied Analysis, 2021, 20 (10) : 36553682. doi: 10.3934/cpaa.2021125 
[17] 
Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 121. doi: 10.3934/mbe.2015.12.1 
[18] 
Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 10411060. doi: 10.3934/dcds.2009.25.1041 
[19] 
Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499521. doi: 10.3934/mbe.2013.10.499 
[20] 
Caisheng Chen, Qing Yuan. Existence of solution to $p$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure and Applied Analysis, 2014, 13 (6) : 22892303. doi: 10.3934/cpaa.2014.13.2289 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]