Citation: |
[1] |
S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation: $-\Delta u + u=a(x)u^p+f(x)$ in $\mathbbR^N$, Calc. Var. Partial Diff. Eqns., 11 (2000), 63-95.doi: 10.1007/s005260050003. |
[2] |
A. Ambrosetti, "Critical Points and Nonlinear Variational Problems," Bulletin Soc. Math. France, Mémoire, 1992. |
[3] |
A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrodinger equations, Journal of the London Mathematical Society, 75 (2007), 67-82. |
[4] |
T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation, Mathematische Annalen, 388 (2007), 147-185. |
[5] |
T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259-281. |
[6] |
G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differential Equations, 17 (2003), 257-281. |
[7] |
E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, Journal of differential equations, 74 (1988), 120-156. |
[8] |
D. G. de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrödinger systems, Ann. I. H. Poincaré-AN, 25 (2008), 149-161. |
[9] |
N. Ikoma, Uniqueness of positive solutions for a nonlinear elliptic system, NoDEA: Nonlinear Differential Equations and Applications, 16 (2009), 555-567. |
[10] |
M. K. Kwong, Uniqueness of positive solution of $\Delta u-u+u^p=0$ in $\mathbbR^N$, Arch. Rat. Math. Anal., 105 (1989), 243-266. |
[11] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case I, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 102-145. |
[12] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The local compact case II, Ann. Inst. H. Poincaré Anal. Non Lineairé, 1 (1984), 223-283. |
[13] |
W. C. Lien, S. Y. Tzeng and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, Differential Integral Equations, 6 (1993), 1281-1298. |
[14] |
T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. I. H. Poincaré-AN, 22 (2005), 403-439. |
[15] |
P. E. Merilees, The pseudo-spectral approximation applied to the shallow water equations on a sphere, Atmosphere, 11 (1973), 13-20. |
[16] |
E. Montefusco, B. Pellacci and M. Squassina, Semiclassical states for weakly coupled nonlinear Schrödinger systems, J. Eur. Math. Soc., 10 (2008), 47-71. |
[17] |
Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Am. Math. Soc., 95 (1960), 101-123.doi: 10.1090/S0002-9947-1960-0111898-8. |
[18] |
A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, Journal of Differential Equations, 227 (2006), 258-281. |
[19] |
H. C. Wang and T. F. Wu, Symmetry breaking in a bounded symmetry domain, Nonlinear Differential Equations Appl., 11 (2004), 361-377.doi: 10.1007/s00030-004-2008-2. |