November  2013, 18(9): 2377-2396. doi: 10.3934/dcdsb.2013.18.2377

Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells

1. 

Department of Mathematics, MOE-LSC, Shanghai Jiao Tong University, Shanghai, 200240, China

2. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240

Received  July 2012 Revised  August 2013 Published  September 2013

In the paper we focus on the dynamics of a two-dimensional discrete-time mathematical model, which describes the interaction between the action potential duration (APD) and calcium transient in paced cardiac cells. By qualitative and bifurcation analysis, we prove that this model can undergo period-doubling bifurcation and Neimark-Sacker bifurcation as parameters vary, respectively. These results provide theoretical support on some experimental observations, such as the alternans of APD and calcium transient, and quasi-periodic oscillations between APD and calcium transient in paced cardiac cells. The rich and complicated bifurcation phenomena indicate that the dynamics of this model are very sensitive to some parameters, which might have important implications for the control of cardiovascular disease.
Citation: Jiying Ma, Dongmei Xiao. Nonlinear dynamics of a mathematical model on action potential duration and calcium transient in paced cardiac cells. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2377-2396. doi: 10.3934/dcdsb.2013.18.2377
References:
[1]

R. Aguilar-Lpez, R. Martnez-Guerra, H. Puebla and R. Hernndez-Surez, High order sliding-mode dynamic control for chaotic intracellular calcium oscillations, Nonlinear Analysis : Real World Appl., 11 (2010), 217-231. doi: 10.1016/j.nonrwa.2008.10.054.

[2]

J. W. M. Bassani, W. Yuan and D. M. Bers, Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes, Am. J. Physiol., 268 (1995), C1313-C1319.

[3]

D. M. Bers, Cardiac excitation-contraction coupling, Nature, 415 (2002), 198-205. doi: 10.1038/415198a.

[4]

H. Bien, L. Yin and E. Entcheva, Calcium instabilities in mammalian cardiomyocyte networks, Biophysical Journal, 90 (2006), 2628-2640. doi: 10.1529/biophysj.105.063321.

[5]

E. Chudin, J. Goldhaber, A. Garfinkel, J. Weiss and B. Kogan, Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia, Biophysics Journal, 77 (1999), 2930-2941. doi: 10.1016/S0006-3495(99)77126-2.

[6]

D. E. Euler, Cardiac alternans: mechanisms and pathophysiological significance, Cardiovascular Research, 42 (1999), 583-590. doi: 10.1016/S0008-6363(99)00011-5.

[7]

J. I. Goldhaber, L. H. Xie, T. Duong, C. Motter, K. Khuu and J. N. Weiss, Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling, Circulation Research, 96 (2005), 459-466. doi: 10.1161/01.RES.0000156891.66893.83.

[8]

M. R. Guevara, L. Glass and A. Shrier, Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells, Science, 214 (1981), 1350-1353. doi: 10.1126/science.7313693.

[9]

G. M. Hall, S. Bahar and D. J. Gauthier, Prevalence of rate-dependent behaviors in cardiac muscle, Phys. Rev. Lett., 82 (1999), 2995-2998. doi: 10.1103/PhysRevLett.82.2995.

[10]

A. Karma, Electrical alternans and spiral wave breakup in cardiac tissue, Chaos, 4 (1994), 461-472. doi: 10.1063/1.166024.

[11]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Applied Mathematical Sciences, 3rd edition, Springer-Verlag, New York, LLC 2004.

[12]

C. H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation Research, 74 (1994), 1071-1096. doi: 10.1161/01.RES.74.6.1071.

[13]

R. Mehra, Global public health problem of sudden cardiac death, Journal of Electrocardiology, 40 (2007), S118-S122. doi: 10.1016/j.jelectrocard.2007.06.023.

[14]

J. B. Nolasco and R. W. Dahlen, A graphic method for the study of alternation in cardiac action potentials, J. Appl. Physiol., 25 (1968), 191-196.

[15]

N. F. Otani and R. F. Gilmour, Memory models for the electrical properties of local cardiac systems, Journal of Theoretical Biology, 187 (1997), 409-436. doi: 10.1006/jtbi.1997.0447.

[16]

Z. Qu, Y. Shiferaw and J. N. Weiss, Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study, Phys. Rev. E, 75 (2007), 011927. doi: 10.1103/PhysRevE.75.011927.

[17]

T. R. Shannon, K. S. Ginsburg and D. M. Bers, Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration, Biophysical Journal, 78 (2000), 334-343. doi: 10.1016/S0006-3495(00)76596-9.

[18]

Y. Shiferaw and A. Karma, Turing instability mediated by voltage and calcium diffusion in paced cardiac cells, Proc. Natl. Acad. Sci., 103 (2006), 5670-5675. doi: 10.1073/pnas.0511061103.

[19]

Y. Shiferaw, Z. Qu, A. Garfinkel, A. Karma and J. N. Weiss, Nonlinear dynamics of paced cardiac cells, Annals of the New York Academy of Sciences, 1080 (2006), 376-394. doi: 10.1196/annals.1380.028.x.

[20]

Y. Shiferaw, D. Sato and A. Karma, Coupled dynamics of voltage and calcium in paced cardiac cells, Phys. Rev. E, 71 (2005), 021903. doi: 10.1103/PhysRevE.71.021903.

[21]

Y. Shiferaw, M. A. Watanabe, A. Garfinkel, J. N. Weiss and A. Karma, Model of intracellular calcium cycling in ventricular myocytes, Biophysical Journal, 85 (2003), 3666-3686. doi: 10.1016/S0006-3495(03)74784-5.

[22]

M. D. Stubna, R. H. Rand and R. F. Gilmour, Analysis of a non-linear partial difference equation, and its application to cardiac dynamics, Journal of Difference Equations and Applications, 8 (2002), 1147-1169. doi: 10.1080/1023619021000054006.

[23]

R. Thul and S. Coombes, Understanding cardiac alternans: A piecewise linear modeling framework, Chaos, 20 (2010), 045102. doi: 10.1063/1.3518362.

[24]

E. G. Tolkacheva, M. M. Romeo and D. J. Gauthier, Control of cardiac alternans in a mapping model with memory, Physica D: Nonlinear Phenomena, 194 (2004), 385-391. doi: 10.1016/j.physd.2004.03.008.

[25]

M. L. Walker and D. S. Rosenbaum, Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death, Cardiovascular Research, 57 (2003), 599-614. doi: 10.1016/S0008-6363(02)00737-X.

[26]

G. S. B. Williams, G. D. Smith, E. A. Sobie and M. S. Jafri, Models of cardiac excitation-contraction coupling in ventricular myocytes, Mathematical Biosciences, 226 (2010), 1-15. doi: 10.1016/j.mbs.2010.03.005.

show all references

References:
[1]

R. Aguilar-Lpez, R. Martnez-Guerra, H. Puebla and R. Hernndez-Surez, High order sliding-mode dynamic control for chaotic intracellular calcium oscillations, Nonlinear Analysis : Real World Appl., 11 (2010), 217-231. doi: 10.1016/j.nonrwa.2008.10.054.

[2]

J. W. M. Bassani, W. Yuan and D. M. Bers, Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes, Am. J. Physiol., 268 (1995), C1313-C1319.

[3]

D. M. Bers, Cardiac excitation-contraction coupling, Nature, 415 (2002), 198-205. doi: 10.1038/415198a.

[4]

H. Bien, L. Yin and E. Entcheva, Calcium instabilities in mammalian cardiomyocyte networks, Biophysical Journal, 90 (2006), 2628-2640. doi: 10.1529/biophysj.105.063321.

[5]

E. Chudin, J. Goldhaber, A. Garfinkel, J. Weiss and B. Kogan, Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia, Biophysics Journal, 77 (1999), 2930-2941. doi: 10.1016/S0006-3495(99)77126-2.

[6]

D. E. Euler, Cardiac alternans: mechanisms and pathophysiological significance, Cardiovascular Research, 42 (1999), 583-590. doi: 10.1016/S0008-6363(99)00011-5.

[7]

J. I. Goldhaber, L. H. Xie, T. Duong, C. Motter, K. Khuu and J. N. Weiss, Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling, Circulation Research, 96 (2005), 459-466. doi: 10.1161/01.RES.0000156891.66893.83.

[8]

M. R. Guevara, L. Glass and A. Shrier, Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells, Science, 214 (1981), 1350-1353. doi: 10.1126/science.7313693.

[9]

G. M. Hall, S. Bahar and D. J. Gauthier, Prevalence of rate-dependent behaviors in cardiac muscle, Phys. Rev. Lett., 82 (1999), 2995-2998. doi: 10.1103/PhysRevLett.82.2995.

[10]

A. Karma, Electrical alternans and spiral wave breakup in cardiac tissue, Chaos, 4 (1994), 461-472. doi: 10.1063/1.166024.

[11]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Applied Mathematical Sciences, 3rd edition, Springer-Verlag, New York, LLC 2004.

[12]

C. H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation Research, 74 (1994), 1071-1096. doi: 10.1161/01.RES.74.6.1071.

[13]

R. Mehra, Global public health problem of sudden cardiac death, Journal of Electrocardiology, 40 (2007), S118-S122. doi: 10.1016/j.jelectrocard.2007.06.023.

[14]

J. B. Nolasco and R. W. Dahlen, A graphic method for the study of alternation in cardiac action potentials, J. Appl. Physiol., 25 (1968), 191-196.

[15]

N. F. Otani and R. F. Gilmour, Memory models for the electrical properties of local cardiac systems, Journal of Theoretical Biology, 187 (1997), 409-436. doi: 10.1006/jtbi.1997.0447.

[16]

Z. Qu, Y. Shiferaw and J. N. Weiss, Nonlinear dynamics of cardiac excitation-contraction coupling: an iterated map study, Phys. Rev. E, 75 (2007), 011927. doi: 10.1103/PhysRevE.75.011927.

[17]

T. R. Shannon, K. S. Ginsburg and D. M. Bers, Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration, Biophysical Journal, 78 (2000), 334-343. doi: 10.1016/S0006-3495(00)76596-9.

[18]

Y. Shiferaw and A. Karma, Turing instability mediated by voltage and calcium diffusion in paced cardiac cells, Proc. Natl. Acad. Sci., 103 (2006), 5670-5675. doi: 10.1073/pnas.0511061103.

[19]

Y. Shiferaw, Z. Qu, A. Garfinkel, A. Karma and J. N. Weiss, Nonlinear dynamics of paced cardiac cells, Annals of the New York Academy of Sciences, 1080 (2006), 376-394. doi: 10.1196/annals.1380.028.x.

[20]

Y. Shiferaw, D. Sato and A. Karma, Coupled dynamics of voltage and calcium in paced cardiac cells, Phys. Rev. E, 71 (2005), 021903. doi: 10.1103/PhysRevE.71.021903.

[21]

Y. Shiferaw, M. A. Watanabe, A. Garfinkel, J. N. Weiss and A. Karma, Model of intracellular calcium cycling in ventricular myocytes, Biophysical Journal, 85 (2003), 3666-3686. doi: 10.1016/S0006-3495(03)74784-5.

[22]

M. D. Stubna, R. H. Rand and R. F. Gilmour, Analysis of a non-linear partial difference equation, and its application to cardiac dynamics, Journal of Difference Equations and Applications, 8 (2002), 1147-1169. doi: 10.1080/1023619021000054006.

[23]

R. Thul and S. Coombes, Understanding cardiac alternans: A piecewise linear modeling framework, Chaos, 20 (2010), 045102. doi: 10.1063/1.3518362.

[24]

E. G. Tolkacheva, M. M. Romeo and D. J. Gauthier, Control of cardiac alternans in a mapping model with memory, Physica D: Nonlinear Phenomena, 194 (2004), 385-391. doi: 10.1016/j.physd.2004.03.008.

[25]

M. L. Walker and D. S. Rosenbaum, Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death, Cardiovascular Research, 57 (2003), 599-614. doi: 10.1016/S0008-6363(02)00737-X.

[26]

G. S. B. Williams, G. D. Smith, E. A. Sobie and M. S. Jafri, Models of cardiac excitation-contraction coupling in ventricular myocytes, Mathematical Biosciences, 226 (2010), 1-15. doi: 10.1016/j.mbs.2010.03.005.

[1]

Yunshyong Chow, Sophia Jang. Neimark-Sacker bifurcations in a host-parasitoid system with a host refuge. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1713-1728. doi: 10.3934/dcdsb.2016019

[2]

Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555

[3]

Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399

[4]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

[5]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[6]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5197-5216. doi: 10.3934/dcdsb.2020339

[8]

Ziyad AlSharawi, Nikhil Pal, Joydev Chattopadhyay. The role of vigilance on a discrete-time predator-prey model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022017

[9]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[10]

Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699

[11]

Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933

[12]

M. R. S. Kulenović, Orlando Merino. Global bifurcation for discrete competitive systems in the plane. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 133-149. doi: 10.3934/dcdsb.2009.12.133

[13]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

[14]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109

[15]

Yun Kang. Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2123-2142. doi: 10.3934/dcdsb.2013.18.2123

[16]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[17]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[18]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[19]

Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015

[20]

Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]