November  2013, 18(9): 2427-2439. doi: 10.3934/dcdsb.2013.18.2427

Advantages for controls imposed in a proper subset

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

2. 

School of Mathematical Sciences, Fudan University, KLMNS, Shanghai, 200433, China

Received  October 2012 Revised  August 2013 Published  September 2013

In this paper, we study some time optimal control problems for heat equations on $\Omega\times \mathbb{R}^+$. Two properties under consideration are the existence and the bang-bang properties of time optimal controls. It is proved that those two properties hold when controls are imposed on most proper subsets of $\Omega$; while they do not stand when controls are active on the whole $\Omega$. Besides, a new property for eigenfunctions of $-\Delta$ with Dirichlet boundary condition is revealed.
Citation: Gengsheng Wang, Yashan Xu. Advantages for controls imposed in a proper subset. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2427-2439. doi: 10.3934/dcdsb.2013.18.2427
References:
[1]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, (1998).   Google Scholar

[2]

H. O. Fattorini, Time-optimal control of solutions of operational differential equations., Journal of the Society for Industrial and Applied Mathematics Series A, 2 (1964), 54.  doi: 10.1137/0302005.  Google Scholar

[3]

H. O. Fattorini, "Infinite-dimensional Optimization and Control Theory,", Encyclopedia of Mathematics and its Applications, (1999).   Google Scholar

[4]

Qing Han and Fanghua Lin, "Elliptic Partial Differential Equations,", Courant Lecture Notes in Mathematics, (1997).   Google Scholar

[5]

Steven G. Krantz, "Function Theory of Several Complex Variables,", Pure and Applied Mathematics, (1982).   Google Scholar

[6]

F. H. Lin, A uniqueness theorem for parabolic equations,, Communications on Pure and Applied Mathematics, 43 (1990), 127.  doi: 10.1002/cpa.3160430105.  Google Scholar

[7]

Qi L and Gengsheng Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations,, SIAM Journal on Control and Optimization, 49 (2011), 1124.  doi: 10.1137/10081277X.  Google Scholar

[8]

A. M. Micheletti, Perturbazione dello spettro dell'operatore di Laplace, in relazione ad una variazione del campo, (Italian), Ann. Scuola Norm. Sup. Pisa, 26 (1972), 151.   Google Scholar

[9]

Victor J. Mizel and Thomas I. Seidman, An abstract bang-bang principle and time-optimal boundary control of the heat equation,, SIAM Journal on Control and Optimization, 35 (1997), 1204.  doi: 10.1137/S0363012996265470.  Google Scholar

[10]

Jaime H. Ortega and Enrique Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation,, SIAM Journal on Control and Optimization, 39 (2000), 1585.  doi: 10.1137/S0363012900358483.  Google Scholar

[11]

Kim Dang Phung and Gengsheng Wang, An observability estimate for parabolic equations from a measurable set in time and its applications,, Journal of the European Mathematical Society, 15 (2013), 681.  doi: 10.4171/JEMS/371.  Google Scholar

[12]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[13]

E. D. Sontag, "Mathematical Control Theory: Deterministic Finite-Dimensional Systems,", Second edition, (1998).   Google Scholar

[14]

K. Uhlenbeck, Generic properties of eigenfunctions,, American Journal of Mathematics, 98 (1976), 1059.  doi: 10.2307/2374041.  Google Scholar

[15]

Gengsheng Wang, $L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem,, SIAM Journal on Control and Optimization, 47 (2008), 1701.  doi: 10.1137/060678191.  Google Scholar

show all references

References:
[1]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, (1998).   Google Scholar

[2]

H. O. Fattorini, Time-optimal control of solutions of operational differential equations., Journal of the Society for Industrial and Applied Mathematics Series A, 2 (1964), 54.  doi: 10.1137/0302005.  Google Scholar

[3]

H. O. Fattorini, "Infinite-dimensional Optimization and Control Theory,", Encyclopedia of Mathematics and its Applications, (1999).   Google Scholar

[4]

Qing Han and Fanghua Lin, "Elliptic Partial Differential Equations,", Courant Lecture Notes in Mathematics, (1997).   Google Scholar

[5]

Steven G. Krantz, "Function Theory of Several Complex Variables,", Pure and Applied Mathematics, (1982).   Google Scholar

[6]

F. H. Lin, A uniqueness theorem for parabolic equations,, Communications on Pure and Applied Mathematics, 43 (1990), 127.  doi: 10.1002/cpa.3160430105.  Google Scholar

[7]

Qi L and Gengsheng Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations,, SIAM Journal on Control and Optimization, 49 (2011), 1124.  doi: 10.1137/10081277X.  Google Scholar

[8]

A. M. Micheletti, Perturbazione dello spettro dell'operatore di Laplace, in relazione ad una variazione del campo, (Italian), Ann. Scuola Norm. Sup. Pisa, 26 (1972), 151.   Google Scholar

[9]

Victor J. Mizel and Thomas I. Seidman, An abstract bang-bang principle and time-optimal boundary control of the heat equation,, SIAM Journal on Control and Optimization, 35 (1997), 1204.  doi: 10.1137/S0363012996265470.  Google Scholar

[10]

Jaime H. Ortega and Enrique Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation,, SIAM Journal on Control and Optimization, 39 (2000), 1585.  doi: 10.1137/S0363012900358483.  Google Scholar

[11]

Kim Dang Phung and Gengsheng Wang, An observability estimate for parabolic equations from a measurable set in time and its applications,, Journal of the European Mathematical Society, 15 (2013), 681.  doi: 10.4171/JEMS/371.  Google Scholar

[12]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Translated from the Russian by K. N. Trirogoff; edited by L. W. Neustadt Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[13]

E. D. Sontag, "Mathematical Control Theory: Deterministic Finite-Dimensional Systems,", Second edition, (1998).   Google Scholar

[14]

K. Uhlenbeck, Generic properties of eigenfunctions,, American Journal of Mathematics, 98 (1976), 1059.  doi: 10.2307/2374041.  Google Scholar

[15]

Gengsheng Wang, $L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem,, SIAM Journal on Control and Optimization, 47 (2008), 1701.  doi: 10.1137/060678191.  Google Scholar

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[9]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[10]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[11]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[14]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[19]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]