November  2013, 18(9): 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

Spreading speed and traveling waves for a two-species weak competition system with free boundary

1. 

Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan

Received  May 2013 Revised  July 2013 Published  September 2013

In this paper, we will focus on the spreading speed for a Lotka-Volterra type weak competition model with free boundary in one-dimensional habitat. Based on the comparison principle for free boundary problems, we provide some estimates of the spreading speed. Also, we deal with traveling wave solutions for the same model and show that there exists a traveling wave solution with monotone profile using a shooting method and the Schauder's fixed point theorem.
Citation: Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441
References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Networks and Heterogeneous Media (NHM), 7 (2012), 583.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[2]

C.-H. Chang and C.-C. Chen, Travelling wave solutions of a free boundary problem for a two-species competitive model,, Communications on Pure and Applied Analysis (CPAA), 12 (2012), 1065.  doi: 10.3934/cpaa.2013.12.1065.  Google Scholar

[3]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM Journal on Mathematical Analysis, 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[4]

Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II,, Journal of Differential Equations, 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[5]

Y. Du, Z. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, Journal of Functional Analysis, 265 (2013), 2089.  doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[6]

Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffsive logistic model with a free boundary,, SIAM Journal on Mathematical Analysis, 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[7]

Y. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor,, Discrete Cont. Dyn. Syst. (Ser. B), ().   Google Scholar

[8]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, J. Eur. Math. Soc., ().   Google Scholar

[9]

P. Feng and Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony,, Communications on Pure and Applied Analysis (CPAA), 6 (2007), 1145.  doi: 10.3934/cpaa.2007.6.1145.  Google Scholar

[10]

J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system,, Journal of Dynamics and Differential Equations, 24 (2012), 873.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[11]

D. Hilhorst, M. Mimura and R. Schtzle, Vanishing latent heat limit in a Stefan-like problem arising in biology,, Nonlinear Analysis: Real World Applications, 4 (2003), 261.  doi: 10.1016/S1468-1218(02)00009-3.  Google Scholar

[12]

Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology,, Adv. Math. Sci. Appl., 21 (2011), 467.   Google Scholar

[13]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[14]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan Journal of Applied Mathematics, 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[15]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology,, Hiroshima Math. J., 16 (1986), 477.   Google Scholar

[16]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations,, Hiroshima Math. J., 17 (1987), 241.   Google Scholar

[17]

R. Peng and X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession,, Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 33 (2013), 2007.  doi: 10.3934/dcds.2013.33.2007.  Google Scholar

[18]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion,, Archive for Rational Mechanics and Analysis, 73 (1980), 69.  doi: 10.1007/BF00283257.  Google Scholar

[19]

M. X. Wang, On some free boundary problems of the prey-predator model,, preprint, ().   Google Scholar

show all references

References:
[1]

G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Networks and Heterogeneous Media (NHM), 7 (2012), 583.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[2]

C.-H. Chang and C.-C. Chen, Travelling wave solutions of a free boundary problem for a two-species competitive model,, Communications on Pure and Applied Analysis (CPAA), 12 (2012), 1065.  doi: 10.3934/cpaa.2013.12.1065.  Google Scholar

[3]

X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM Journal on Mathematical Analysis, 32 (2000), 778.  doi: 10.1137/S0036141099351693.  Google Scholar

[4]

Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II,, Journal of Differential Equations, 250 (2011), 4336.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[5]

Y. Du, Z. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment,, Journal of Functional Analysis, 265 (2013), 2089.  doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[6]

Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffsive logistic model with a free boundary,, SIAM Journal on Mathematical Analysis, 42 (2010), 377.  doi: 10.1137/090771089.  Google Scholar

[7]

Y. Du and Z. G. Lin, The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor,, Discrete Cont. Dyn. Syst. (Ser. B), ().   Google Scholar

[8]

Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries,, J. Eur. Math. Soc., ().   Google Scholar

[9]

P. Feng and Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony,, Communications on Pure and Applied Analysis (CPAA), 6 (2007), 1145.  doi: 10.3934/cpaa.2007.6.1145.  Google Scholar

[10]

J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system,, Journal of Dynamics and Differential Equations, 24 (2012), 873.  doi: 10.1007/s10884-012-9267-0.  Google Scholar

[11]

D. Hilhorst, M. Mimura and R. Schtzle, Vanishing latent heat limit in a Stefan-like problem arising in biology,, Nonlinear Analysis: Real World Applications, 4 (2003), 261.  doi: 10.1016/S1468-1218(02)00009-3.  Google Scholar

[12]

Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology,, Adv. Math. Sci. Appl., 21 (2011), 467.   Google Scholar

[13]

Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[14]

M. Mimura, Y. Yamada and S. Yotsutani, A free boundary problem in ecology,, Japan Journal of Applied Mathematics, 2 (1985), 151.  doi: 10.1007/BF03167042.  Google Scholar

[15]

M. Mimura, Y. Yamada and S. Yotsutani, Stability analysis for free boundary problems in ecology,, Hiroshima Math. J., 16 (1986), 477.   Google Scholar

[16]

M. Mimura, Y. Yamada and S. Yotsutani, Free boundary problems for some reaction-diffusion equations,, Hiroshima Math. J., 17 (1987), 241.   Google Scholar

[17]

R. Peng and X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession,, Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 33 (2013), 2007.  doi: 10.3934/dcds.2013.33.2007.  Google Scholar

[18]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion,, Archive for Rational Mechanics and Analysis, 73 (1980), 69.  doi: 10.1007/BF00283257.  Google Scholar

[19]

M. X. Wang, On some free boundary problems of the prey-predator model,, preprint, ().   Google Scholar

[1]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[2]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[3]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[4]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[5]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[6]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[9]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[10]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[11]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[12]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[13]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[14]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[15]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[18]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[19]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]