November  2013, 18(9): 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

On positive solutions and the Omega limit set for a class of delay differential equations

1. 

Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, 100084, China

2. 

School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China

3. 

Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, 100084, China

Received  March 2013 Revised  May 2013 Published  September 2013

This paper studies positive solutions of a class of delay differential equations of two delays that are originated from a mathematical model of hematopoietic dynamics. We give an optimal condition on initial conditions for $t\leq 0$ such that the solutions are positive for $t>0$. Long time behaviors of these positive solutions are also discussed through a dynamical system defined at a space of continuous functions. Characteristic description of the $\omega$ limit set of this dynamical system is obtained. This $\omega$ limit set provides informations for the long time behaviors of positive solutions of the delay differential equation.
Citation: Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487
References:
[1]

J. Adamson, The relationship of erythropoietin and iron metabolism to red blood cell production in humans,, Semin. Oncol., 21 (1974), 9.   Google Scholar

[2]

J. Bélair and M. C. Mackey, Consumer memory and price fluctuations in commodity markets: An integrodifferential model,, Journal of Dynamics and Differential Equations, 1 (1989), 299.  doi: 10.1007/BF01053930.  Google Scholar

[3]

D. L. Bellman and S. A. Gourley, Asymptotic properties of a delay differential equation model for the interaction of glucose with plasma and interstitial insulin,, Applied Mathematics and Computation, 151 (2004), 189.  doi: 10.1016/S0096-3003(03)00332-1.  Google Scholar

[4]

S. Bernard, J. Bélair and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence based on mathematical modeling,, Journal of Theoretical Biology, 223 (2003), 283.  doi: 10.1016/S0022-5193(03)00090-0.  Google Scholar

[5]

C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis-I. Periodic chronic myelogenous leukemia,, Journal of Theoretical Biology, 237 (2005), 117.  doi: 10.1016/j.jtbi.2005.03.033.  Google Scholar

[6]

C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis: II. Cyclical neutropenia,, Journal of Theoretical Biology, 237 (2005), 133.  doi: 10.1016/j.jtbi.2005.03.034.  Google Scholar

[7]

C. Colijn and M. C. Mackey, Bifurcation and bistability in a model of hematopoietic regulation,, SIAM Journal on Applied Dynamical Systems, 6 (2007), 378.  doi: 10.1137/050640072.  Google Scholar

[8]

B. Dorizzi, B. Grammaticos, M. Le Berre, Y. Pomeau, E. Ressayre and A. Tallet, Statistics and dimension of chaos in differential delay systems,, Physical Review A, 35 (1987), 328.  doi: 10.1103/PhysRevA.35.328.  Google Scholar

[9]

S. A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection,, SIAM Journal on Applied Mathematics, 65 (2005), 550.  doi: 10.1137/S0036139903436613.  Google Scholar

[10]

J. Lei and M. C. Mackey, Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system,, SIAM Journal on Applied Mathematics, 67 (2007), 387.  doi: 10.1137/060650234.  Google Scholar

[11]

J. Lei and M. C. Mackey, Deterministic Brownian motion generated from differential delay equations,, Physical Review E, 84 (2011).  doi: 10.1103/PhysRevE.84.041105.  Google Scholar

[12]

J. Lei and M. C. Mackey, Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia,, Journal of Theoretical Biology, 270 (2011), 143.  doi: 10.1016/j.jtbi.2010.11.024.  Google Scholar

[13]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[14]

J. Mahaffy, J. Bélair and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependent delay: Applications in erythropoiesis,, Journal of Theoretical Biology, 190 (1998), 135.  doi: 10.1006/jtbi.1997.0537.  Google Scholar

[15]

M. Silva, D. Grillot, A. Benito, C. Richard, G. Nunez and J. Fernandez-Luna, Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through bcl-1 and bcl-2,, Blood, 88 (1996), 1576.   Google Scholar

[16]

J. C. Sprott, A simple chaotic delay differential equation,, Physics Letters A, 366 (2007), 397.  doi: 10.1016/j.physleta.2007.01.083.  Google Scholar

show all references

References:
[1]

J. Adamson, The relationship of erythropoietin and iron metabolism to red blood cell production in humans,, Semin. Oncol., 21 (1974), 9.   Google Scholar

[2]

J. Bélair and M. C. Mackey, Consumer memory and price fluctuations in commodity markets: An integrodifferential model,, Journal of Dynamics and Differential Equations, 1 (1989), 299.  doi: 10.1007/BF01053930.  Google Scholar

[3]

D. L. Bellman and S. A. Gourley, Asymptotic properties of a delay differential equation model for the interaction of glucose with plasma and interstitial insulin,, Applied Mathematics and Computation, 151 (2004), 189.  doi: 10.1016/S0096-3003(03)00332-1.  Google Scholar

[4]

S. Bernard, J. Bélair and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence based on mathematical modeling,, Journal of Theoretical Biology, 223 (2003), 283.  doi: 10.1016/S0022-5193(03)00090-0.  Google Scholar

[5]

C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis-I. Periodic chronic myelogenous leukemia,, Journal of Theoretical Biology, 237 (2005), 117.  doi: 10.1016/j.jtbi.2005.03.033.  Google Scholar

[6]

C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis: II. Cyclical neutropenia,, Journal of Theoretical Biology, 237 (2005), 133.  doi: 10.1016/j.jtbi.2005.03.034.  Google Scholar

[7]

C. Colijn and M. C. Mackey, Bifurcation and bistability in a model of hematopoietic regulation,, SIAM Journal on Applied Dynamical Systems, 6 (2007), 378.  doi: 10.1137/050640072.  Google Scholar

[8]

B. Dorizzi, B. Grammaticos, M. Le Berre, Y. Pomeau, E. Ressayre and A. Tallet, Statistics and dimension of chaos in differential delay systems,, Physical Review A, 35 (1987), 328.  doi: 10.1103/PhysRevA.35.328.  Google Scholar

[9]

S. A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection,, SIAM Journal on Applied Mathematics, 65 (2005), 550.  doi: 10.1137/S0036139903436613.  Google Scholar

[10]

J. Lei and M. C. Mackey, Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system,, SIAM Journal on Applied Mathematics, 67 (2007), 387.  doi: 10.1137/060650234.  Google Scholar

[11]

J. Lei and M. C. Mackey, Deterministic Brownian motion generated from differential delay equations,, Physical Review E, 84 (2011).  doi: 10.1103/PhysRevE.84.041105.  Google Scholar

[12]

J. Lei and M. C. Mackey, Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia,, Journal of Theoretical Biology, 270 (2011), 143.  doi: 10.1016/j.jtbi.2010.11.024.  Google Scholar

[13]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.  doi: 10.1126/science.267326.  Google Scholar

[14]

J. Mahaffy, J. Bélair and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependent delay: Applications in erythropoiesis,, Journal of Theoretical Biology, 190 (1998), 135.  doi: 10.1006/jtbi.1997.0537.  Google Scholar

[15]

M. Silva, D. Grillot, A. Benito, C. Richard, G. Nunez and J. Fernandez-Luna, Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through bcl-1 and bcl-2,, Blood, 88 (1996), 1576.   Google Scholar

[16]

J. C. Sprott, A simple chaotic delay differential equation,, Physics Letters A, 366 (2007), 397.  doi: 10.1016/j.physleta.2007.01.083.  Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[8]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]