• Previous Article
    Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$
  • DCDS-B Home
  • This Issue
  • Next Article
    Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring
December  2013, 18(10): 2513-2536. doi: 10.3934/dcdsb.2013.18.2513

Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model

1. 

Centre for Mathematical Biology, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G2G1, Canada

2. 

Department of Mathematics and Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

Received  January 2013 Revised  May 2013 Published  October 2013

In a recent study (K.J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (4), 363-375, 2011) a model for chemotaxis incorporating logistic growth was investigated for its pattern formation properties. In particular, a variety of complex spatio-temporal patterning was found, including stationary, periodic and chaotic. Complicated dynamics appear to arise through a sequence of ``merging and emerging'' events: the merging of two neighbouring aggregates or the emergence of a new aggregate in an open space. In this paper we focus on a time-discrete dynamical system motivated by these dynamics, which we call the merging-emerging system (MES). We introduce this new class of set-valued dynamical systems and analyse its capacity to generate similar ``pattern formation'' dynamics. The MES shows remarkably close correspondence with patterning in the logistic chemotaxis model, strengthening our assertion that the characteristic length scales of merging and emerging are responsible for the observed dynamics. Furthermore, the MES describes a novel class of pattern-forming discrete dynamical systems worthy of study in its own right.
Citation: Thomas Hillen, Jeffery Zielinski, Kevin J. Painter. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2513-2536. doi: 10.3934/dcdsb.2013.18.2513
References:
[1]

J. London Math. Soc., 74 (2006), 453-474. doi: 10.1112/S0024610706023015.  Google Scholar

[2]

J. Math. Biol., 63 (2011), 141-171. doi: 10.1007/s00285-010-0369-1.  Google Scholar

[3]

Physica A: Statistical Mechanics and its Applications, 391 (2012), 4061-4062. doi: 10.1016/j.physa.2011.12.054.  Google Scholar

[4]

Physical Review E, 84 (2011), 016309 [8 pages]. doi: 10.1103/PhysRevE.84.016309.  Google Scholar

[5]

R. Baronas and R. Šimkus, Modelling the bacterial self-organization in circular container along the contact line as detected by bioluminescence imaging,, Nonlinear Anal. Model. Control, 16 (): 270.   Google Scholar

[6]

Princeton University Press, 2008. Google Scholar

[7]

letters to Nature, 349 (1991), 630-633. doi: 10.1038/349630a0.  Google Scholar

[8]

Phys. Rev. E, 64, 051914, 2001. doi: 10.1103/PhysRevE.64.051914.  Google Scholar

[9]

J. Math. Biol., 46 (2003), 153-170. doi: 10.1007/s00285-002-0173-7.  Google Scholar

[10]

J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.  Google Scholar

[11]

Math. Mod. Meth. Appl. Sci., 23 (2013), 165-198. doi: 10.1142/S0218202512500480.  Google Scholar

[12]

Jahresberichte der DMV, 105 (2003), 103-165.  Google Scholar

[13]

IMA J. Appl. Math., 72 (2007), 140-162. doi: 10.1093/imamat/hxl028.  Google Scholar

[14]

Trans. AMS, 261 (1980), 589-604. doi: 10.1090/S0002-9947-1980-0580905-3.  Google Scholar

[15]

J. Theo. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[16]

J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[17]

submitted, 2013. Google Scholar

[18]

Physica D: Nonlinear Phenomena, 241 (2012), 1629-1639. doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[19]

In W. Alt, A. Deutsch, and G. Dunn, editors, Dynamics of Cell and Tissue Motion, Birkhäuser, 1996. Google Scholar

[20]

SIAM Appl. Math., 70 (2009), 133-167. doi: 10.1137/070711505.  Google Scholar

[21]

J. Theor. Biol., 189 (1997), 63-80. doi: 10.1006/jtbi.1997.0494.  Google Scholar

[22]

Physica D: Nonlinear Phenomena, 240 (2011), 363-375. doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[23]

J. Math. Biol., 55 (2007), 365-388. doi: 10.1007/s00285-007-0088-4.  Google Scholar

[24]

Luminescence, 26 (2011), 716-721. Google Scholar

[25]

Chaos, 17 (2007), 037108, 13 pp. doi: 10.1063/1.2766864.  Google Scholar

[26]

Biophys. J., 68 (1995), 2181-2189. Google Scholar

show all references

References:
[1]

J. London Math. Soc., 74 (2006), 453-474. doi: 10.1112/S0024610706023015.  Google Scholar

[2]

J. Math. Biol., 63 (2011), 141-171. doi: 10.1007/s00285-010-0369-1.  Google Scholar

[3]

Physica A: Statistical Mechanics and its Applications, 391 (2012), 4061-4062. doi: 10.1016/j.physa.2011.12.054.  Google Scholar

[4]

Physical Review E, 84 (2011), 016309 [8 pages]. doi: 10.1103/PhysRevE.84.016309.  Google Scholar

[5]

R. Baronas and R. Šimkus, Modelling the bacterial self-organization in circular container along the contact line as detected by bioluminescence imaging,, Nonlinear Anal. Model. Control, 16 (): 270.   Google Scholar

[6]

Princeton University Press, 2008. Google Scholar

[7]

letters to Nature, 349 (1991), 630-633. doi: 10.1038/349630a0.  Google Scholar

[8]

Phys. Rev. E, 64, 051914, 2001. doi: 10.1103/PhysRevE.64.051914.  Google Scholar

[9]

J. Math. Biol., 46 (2003), 153-170. doi: 10.1007/s00285-002-0173-7.  Google Scholar

[10]

J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.  Google Scholar

[11]

Math. Mod. Meth. Appl. Sci., 23 (2013), 165-198. doi: 10.1142/S0218202512500480.  Google Scholar

[12]

Jahresberichte der DMV, 105 (2003), 103-165.  Google Scholar

[13]

IMA J. Appl. Math., 72 (2007), 140-162. doi: 10.1093/imamat/hxl028.  Google Scholar

[14]

Trans. AMS, 261 (1980), 589-604. doi: 10.1090/S0002-9947-1980-0580905-3.  Google Scholar

[15]

J. Theo. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[16]

J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[17]

submitted, 2013. Google Scholar

[18]

Physica D: Nonlinear Phenomena, 241 (2012), 1629-1639. doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[19]

In W. Alt, A. Deutsch, and G. Dunn, editors, Dynamics of Cell and Tissue Motion, Birkhäuser, 1996. Google Scholar

[20]

SIAM Appl. Math., 70 (2009), 133-167. doi: 10.1137/070711505.  Google Scholar

[21]

J. Theor. Biol., 189 (1997), 63-80. doi: 10.1006/jtbi.1997.0494.  Google Scholar

[22]

Physica D: Nonlinear Phenomena, 240 (2011), 363-375. doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[23]

J. Math. Biol., 55 (2007), 365-388. doi: 10.1007/s00285-007-0088-4.  Google Scholar

[24]

Luminescence, 26 (2011), 716-721. Google Scholar

[25]

Chaos, 17 (2007), 037108, 13 pp. doi: 10.1063/1.2766864.  Google Scholar

[26]

Biophys. J., 68 (1995), 2181-2189. Google Scholar

[1]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[4]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[5]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[6]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[8]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[9]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[10]

Serena Brianzoni, Giovanni Campisi. Dynamical analysis of a banking duopoly model with capital regulation and asymmetric costs. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021116

[11]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[12]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[13]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[14]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[15]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[16]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[17]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[18]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[19]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[20]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (4)

[Back to Top]