December  2013, 18(10): 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  November 2012 Revised  July 2013 Published  October 2013

This paper gives a blow-up result for the quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. It is known that the system has a global solvability in the case where $q < m + \frac{2}{N}$ ($m$ denotes the intensity of diffusion and $q$ denotes the nonlinearity) without any restriction on the size of initial data, and where $q \geq m + \frac{2}{N}$ and the initial data are ``small''. However, there is no result when $q \geq m + \frac{2}{N}$ and the initial data are ``large''. This paper discusses such case and shows that there exist blow-up energy solutions from initial data having large negative energy.
Citation: Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569
References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence,, Math. Z., 202 (1989), 219.  doi: 10.1007/BF01215256.  Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev spaces and Partial differential equations,, Springer, (2011).   Google Scholar

[3]

T. Cieślak, Quasilinear nonuniformly parabolic system modelling chemotaxis,, J. Math. Anal. Appl., 326 (2007), 1410.  doi: 10.1016/j.jmaa.2006.03.080.  Google Scholar

[4]

T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 27 (2010), 437.  doi: 10.1016/j.anihpc.2009.11.016.  Google Scholar

[5]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.  doi: 10.1016/j.jde.2012.01.045.  Google Scholar

[6]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, On the existence of radially symmetric blow-up solutions for the Keller-Segel model,, J. Math. Biol., 44 (2002), 463.  doi: 10.1007/s002850100134.  Google Scholar

[9]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.   Google Scholar

[10]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[11]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[12]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, J. Differential Equations, 252 (2012), 1421.  doi: 10.1016/j.jde.2011.02.012.  Google Scholar

[13]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations, 252 (2012), 2469.  doi: 10.1016/j.jde.2011.08.047.  Google Scholar

[14]

S. Ishida and T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems,, AIMS proceedings, ().   Google Scholar

[15]

S. Ishida, T. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Math. Methods Appl. Sci., 36 (2013), 745.  doi: 10.1002/mma.2622.  Google Scholar

[16]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[17]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time,, IMS Workshop on Reaction-Diffusion Systems (Shatin, 8 (2001), 349.   Google Scholar

[18]

T. Senba and T. Suzuki, A quasi-linear parabolic system of chemotaxis,, Abstr. Appl. Anal., 2006 (2006), 1.  doi: 10.1155/AAA/2006/23061.  Google Scholar

[19]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems,, Differential Integral Equations, 19 (2006), 841.   Google Scholar

[20]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations, 227 (2006), 333.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[21]

Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type,, J. Differential Equations, 250 (2011), 3047.  doi: 10.1016/j.jde.2011.01.016.  Google Scholar

[22]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[23]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12.  doi: 10.1002/mma.1146.  Google Scholar

[24]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[25]

D. Wrzosek, Long-time behaviour of solutions to a chemotaxis model with volume-filling effect,, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 431.  doi: 10.1017/S0308210500004649.  Google Scholar

show all references

References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence,, Math. Z., 202 (1989), 219.  doi: 10.1007/BF01215256.  Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev spaces and Partial differential equations,, Springer, (2011).   Google Scholar

[3]

T. Cieślak, Quasilinear nonuniformly parabolic system modelling chemotaxis,, J. Math. Anal. Appl., 326 (2007), 1410.  doi: 10.1016/j.jmaa.2006.03.080.  Google Scholar

[4]

T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 27 (2010), 437.  doi: 10.1016/j.anihpc.2009.11.016.  Google Scholar

[5]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.  doi: 10.1016/j.jde.2012.01.045.  Google Scholar

[6]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057.  doi: 10.1088/0951-7715/21/5/009.  Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, On the existence of radially symmetric blow-up solutions for the Keller-Segel model,, J. Math. Biol., 44 (2002), 463.  doi: 10.1007/s002850100134.  Google Scholar

[9]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.   Google Scholar

[10]

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[11]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52.  doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[12]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, J. Differential Equations, 252 (2012), 1421.  doi: 10.1016/j.jde.2011.02.012.  Google Scholar

[13]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations, 252 (2012), 2469.  doi: 10.1016/j.jde.2011.08.047.  Google Scholar

[14]

S. Ishida and T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems,, AIMS proceedings, ().   Google Scholar

[15]

S. Ishida, T. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Math. Methods Appl. Sci., 36 (2013), 745.  doi: 10.1002/mma.2622.  Google Scholar

[16]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[17]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time,, IMS Workshop on Reaction-Diffusion Systems (Shatin, 8 (2001), 349.   Google Scholar

[18]

T. Senba and T. Suzuki, A quasi-linear parabolic system of chemotaxis,, Abstr. Appl. Anal., 2006 (2006), 1.  doi: 10.1155/AAA/2006/23061.  Google Scholar

[19]

Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems,, Differential Integral Equations, 19 (2006), 841.   Google Scholar

[20]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations, 227 (2006), 333.  doi: 10.1016/j.jde.2006.03.003.  Google Scholar

[21]

Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type,, J. Differential Equations, 250 (2011), 3047.  doi: 10.1016/j.jde.2011.01.016.  Google Scholar

[22]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[23]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12.  doi: 10.1002/mma.1146.  Google Scholar

[24]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[25]

D. Wrzosek, Long-time behaviour of solutions to a chemotaxis model with volume-filling effect,, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 431.  doi: 10.1017/S0308210500004649.  Google Scholar

[1]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[2]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[3]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[4]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[5]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[6]

Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635

[7]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[8]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[9]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[10]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[11]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[12]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[13]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[14]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[15]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012

[16]

Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066

[17]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[18]

Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020

[19]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[20]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]