December  2013, 18(10): 2627-2646. doi: 10.3934/dcdsb.2013.18.2627

Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation

1. 

College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kohnodai, Ichikawa, Chiba 272-0827, Japan

2. 

Department of Mathematical Sciences, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan

Received  December 2012 Revised  July 2013 Published  October 2013

We construct the global bounded solutions and the attractors of a parabolic-parabolic chemotaxis-growth system in two- and three-dimensional smooth bounded domains. We derive new $L_p$ and $H^2$ uniform estimates for these solutions. We then construct the absorbing sets and the global attractors for the dynamical systems generated by the solutions. We also show the existence of exponential attractors by applying the existence theorem of Eden-Foias-Nicolaenko-Temam.
Citation: Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627
References:
[1]

M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system,, J. London Math. Soc. (2), 74 (2006), 453.  doi: 10.1112/S0024610706023015.  Google Scholar

[2]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,, Math. Biosci., 56 (1981), 217.  doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[3]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5: Evolution Problems I,, With the collaboration of Michel Artola, (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[4]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Ensembles inertiels pour des équations d'évolution dissipatives, (French) [Inertial sets for dissipative evolution equations],, C. R. Acad. Sci. Paris, 310 (1990), 559.   Google Scholar

[5]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, Research in Applied Mathematics, (1994).   Google Scholar

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scoula Norm. Sup. Pisa Cl. Sci. IV, 24 (1997), 633.   Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.   Google Scholar

[9]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[10]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European J. Appl. Math., 12 (2001), 159.  doi: 10.1017/S0956792501004363.  Google Scholar

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[13]

N. Kurata, K. Kuto, K. Osaki, T. Tsujikawa and T. Sakurai, Bifurcation phenomena of pattern solution to Mimura-Tsujikawa model in one dimension,, GAKUTO Internat. Ser. Math. Sci. Appl., 29 (2008), 265.   Google Scholar

[14]

K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model,, Physica D, 241 (2012), 1629.  doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[15]

M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth,, Physica A, 230 (1996), 499.  doi: 10.1016/0378-4371(96)00051-9.  Google Scholar

[16]

J. D. Murray, Mathematical Biology, II: Spatial Models and Biomedical Applications, 3rd edition,, Springer-Verlag, (2003).   Google Scholar

[17]

E. Nakaguchi and K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation,, Nonlinear Anal., 74 (2011), 286.  doi: 10.1016/j.na.2010.08.044.  Google Scholar

[18]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.   Google Scholar

[19]

T. Nagai, Blow up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domain,, J. Inequal. Appl., 6 (2001), 37.  doi: 10.1155/S1025583401000042.  Google Scholar

[20]

K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations,, Nonlinear Anal., 51 (2002), 119.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[21]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441.   Google Scholar

[22]

K. Osaki and A. Yagi, Global existence for a chemotaxis-growth system in $\mathbbR^2$,, Adv. Math. Sci. Appl., 12 (2002), 587.   Google Scholar

[23]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model,, Physica D: Nonlinear Phenomena, 240 (2011), 363.  doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[24]

T. Suzuki, Free Energy and Self-Interacting Particles,, Progress in Nonlinear Differential Equations and their Applications, (2005).  doi: 10.1007/0-8176-4436-9.  Google Scholar

[25]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849.  doi: 10.1080/03605300701319003.  Google Scholar

[26]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition,, Applied Mathematical Sciences, (1997).   Google Scholar

[27]

M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations,, Bull. Math. Biol., 70 (2008), 1570.  doi: 10.1007/s11538-008-9322-5.  Google Scholar

[28]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd revised and enlarged edition,, Johann Ambrosius Barth Verlag, (1995).   Google Scholar

[29]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties,, J. Math. Anal. Appl., 348 (2008), 708.  doi: 10.1016/j.jmaa.2008.07.071.  Google Scholar

[30]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516.  doi: 10.1080/03605300903473426.  Google Scholar

[31]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[32]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications,, Springer Monographs in Mathematics. Springer-Verlag, (2010).  doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system,, J. London Math. Soc. (2), 74 (2006), 453.  doi: 10.1112/S0024610706023015.  Google Scholar

[2]

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,, Math. Biosci., 56 (1981), 217.  doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[3]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5: Evolution Problems I,, With the collaboration of Michel Artola, (1992).  doi: 10.1007/978-3-642-58090-1.  Google Scholar

[4]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Ensembles inertiels pour des équations d'évolution dissipatives, (French) [Inertial sets for dissipative evolution equations],, C. R. Acad. Sci. Paris, 310 (1990), 559.   Google Scholar

[5]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, Research in Applied Mathematics, (1994).   Google Scholar

[6]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scoula Norm. Sup. Pisa Cl. Sci. IV, 24 (1997), 633.   Google Scholar

[7]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I,, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103.   Google Scholar

[9]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences II,, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51.   Google Scholar

[10]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European J. Appl. Math., 12 (2001), 159.  doi: 10.1017/S0956792501004363.  Google Scholar

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[12]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[13]

N. Kurata, K. Kuto, K. Osaki, T. Tsujikawa and T. Sakurai, Bifurcation phenomena of pattern solution to Mimura-Tsujikawa model in one dimension,, GAKUTO Internat. Ser. Math. Sci. Appl., 29 (2008), 265.   Google Scholar

[14]

K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model,, Physica D, 241 (2012), 1629.  doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[15]

M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth,, Physica A, 230 (1996), 499.  doi: 10.1016/0378-4371(96)00051-9.  Google Scholar

[16]

J. D. Murray, Mathematical Biology, II: Spatial Models and Biomedical Applications, 3rd edition,, Springer-Verlag, (2003).   Google Scholar

[17]

E. Nakaguchi and K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation,, Nonlinear Anal., 74 (2011), 286.  doi: 10.1016/j.na.2010.08.044.  Google Scholar

[18]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.   Google Scholar

[19]

T. Nagai, Blow up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domain,, J. Inequal. Appl., 6 (2001), 37.  doi: 10.1155/S1025583401000042.  Google Scholar

[20]

K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations,, Nonlinear Anal., 51 (2002), 119.  doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[21]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441.   Google Scholar

[22]

K. Osaki and A. Yagi, Global existence for a chemotaxis-growth system in $\mathbbR^2$,, Adv. Math. Sci. Appl., 12 (2002), 587.   Google Scholar

[23]

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model,, Physica D: Nonlinear Phenomena, 240 (2011), 363.  doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[24]

T. Suzuki, Free Energy and Self-Interacting Particles,, Progress in Nonlinear Differential Equations and their Applications, (2005).  doi: 10.1007/0-8176-4436-9.  Google Scholar

[25]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849.  doi: 10.1080/03605300701319003.  Google Scholar

[26]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition,, Applied Mathematical Sciences, (1997).   Google Scholar

[27]

M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis II: Bacterial populations,, Bull. Math. Biol., 70 (2008), 1570.  doi: 10.1007/s11538-008-9322-5.  Google Scholar

[28]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd revised and enlarged edition,, Johann Ambrosius Barth Verlag, (1995).   Google Scholar

[29]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties,, J. Math. Anal. Appl., 348 (2008), 708.  doi: 10.1016/j.jmaa.2008.07.071.  Google Scholar

[30]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516.  doi: 10.1080/03605300903473426.  Google Scholar

[31]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[32]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications,, Springer Monographs in Mathematics. Springer-Verlag, (2010).  doi: 10.1007/978-3-642-04631-5.  Google Scholar

[1]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[2]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[3]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[4]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[5]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[6]

Jiashan Zheng, Yifu Wang. A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 669-686. doi: 10.3934/dcdsb.2017032

[7]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

[8]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[9]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[10]

Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems & Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567

[11]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[12]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[13]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[14]

Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379

[15]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[16]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[17]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

[18]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[19]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[20]

Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]