December  2013, 18(10): 2627-2646. doi: 10.3934/dcdsb.2013.18.2627

Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation

1. 

College of Liberal Arts and Sciences, Tokyo Medical and Dental University, 2-8-30 Kohnodai, Ichikawa, Chiba 272-0827, Japan

2. 

Department of Mathematical Sciences, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan

Received  December 2012 Revised  July 2013 Published  October 2013

We construct the global bounded solutions and the attractors of a parabolic-parabolic chemotaxis-growth system in two- and three-dimensional smooth bounded domains. We derive new $L_p$ and $H^2$ uniform estimates for these solutions. We then construct the absorbing sets and the global attractors for the dynamical systems generated by the solutions. We also show the existence of exponential attractors by applying the existence theorem of Eden-Foias-Nicolaenko-Temam.
Citation: Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627
References:
[1]

J. London Math. Soc. (2), 74 (2006), 453-474. doi: 10.1112/S0024610706023015.  Google Scholar

[2]

Math. Biosci., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[3]

With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon. Translated from the French by Alan Craig. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[4]

C. R. Acad. Sci. Paris, 310 (1990), 559-562.  Google Scholar

[5]

Research in Applied Mathematics, vol. 37, John-Wiley and Sons, Chichester, 1994.  Google Scholar

[6]

Ann. Scoula Norm. Sup. Pisa Cl. Sci. IV, 24 (1997), 633-683.  Google Scholar

[7]

J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.  Google Scholar

[9]

Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69.  Google Scholar

[10]

European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.  Google Scholar

[11]

Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[12]

J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[13]

GAKUTO Internat. Ser. Math. Sci. Appl., 29 (2008), 265-278.  Google Scholar

[14]

Physica D, 241 (2012), 1629-1639. doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[15]

Physica A, 230 (1996), 499-543. doi: 10.1016/0378-4371(96)00051-9.  Google Scholar

[16]

Springer-Verlag, New York, 2003.  Google Scholar

[17]

Nonlinear Anal., 74 (2011), 286-297. doi: 10.1016/j.na.2010.08.044.  Google Scholar

[18]

Adv. Math. Sci. Appl., 5 (1995), 581-601.  Google Scholar

[19]

J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.  Google Scholar

[20]

Nonlinear Anal., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[21]

Funkcial. Ekvac., 44 (2001), 441-469.  Google Scholar

[22]

Adv. Math. Sci. Appl., 12 (2002), 587-606.  Google Scholar

[23]

Physica D: Nonlinear Phenomena, 240 (2011), 363-375. doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[24]

Progress in Nonlinear Differential Equations and their Applications, 62. Birkhäuser Boston, Inc., Boston, MA, 2005. doi: 10.1007/0-8176-4436-9.  Google Scholar

[25]

Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003.  Google Scholar

[26]

Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.  Google Scholar

[27]

Bull. Math. Biol., 70 (2008), 1570-1607. doi: 10.1007/s11538-008-9322-5.  Google Scholar

[28]

Johann Ambrosius Barth Verlag, Heidelberg/Leipzig, 1995.  Google Scholar

[29]

J. Math. Anal. Appl., 348 (2008), 708-729. doi: 10.1016/j.jmaa.2008.07.071.  Google Scholar

[30]

Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426.  Google Scholar

[31]

J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[32]

Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1]

J. London Math. Soc. (2), 74 (2006), 453-474. doi: 10.1112/S0024610706023015.  Google Scholar

[2]

Math. Biosci., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9.  Google Scholar

[3]

With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon. Translated from the French by Alan Craig. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.  Google Scholar

[4]

C. R. Acad. Sci. Paris, 310 (1990), 559-562.  Google Scholar

[5]

Research in Applied Mathematics, vol. 37, John-Wiley and Sons, Chichester, 1994.  Google Scholar

[6]

Ann. Scoula Norm. Sup. Pisa Cl. Sci. IV, 24 (1997), 633-683.  Google Scholar

[7]

J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.  Google Scholar

[8]

Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.  Google Scholar

[9]

Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69.  Google Scholar

[10]

European J. Appl. Math., 12 (2001), 159-177. doi: 10.1017/S0956792501004363.  Google Scholar

[11]

Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[12]

J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[13]

GAKUTO Internat. Ser. Math. Sci. Appl., 29 (2008), 265-278.  Google Scholar

[14]

Physica D, 241 (2012), 1629-1639. doi: 10.1016/j.physd.2012.06.009.  Google Scholar

[15]

Physica A, 230 (1996), 499-543. doi: 10.1016/0378-4371(96)00051-9.  Google Scholar

[16]

Springer-Verlag, New York, 2003.  Google Scholar

[17]

Nonlinear Anal., 74 (2011), 286-297. doi: 10.1016/j.na.2010.08.044.  Google Scholar

[18]

Adv. Math. Sci. Appl., 5 (1995), 581-601.  Google Scholar

[19]

J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.  Google Scholar

[20]

Nonlinear Anal., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X.  Google Scholar

[21]

Funkcial. Ekvac., 44 (2001), 441-469.  Google Scholar

[22]

Adv. Math. Sci. Appl., 12 (2002), 587-606.  Google Scholar

[23]

Physica D: Nonlinear Phenomena, 240 (2011), 363-375. doi: 10.1016/j.physd.2010.09.011.  Google Scholar

[24]

Progress in Nonlinear Differential Equations and their Applications, 62. Birkhäuser Boston, Inc., Boston, MA, 2005. doi: 10.1007/0-8176-4436-9.  Google Scholar

[25]

Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003.  Google Scholar

[26]

Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.  Google Scholar

[27]

Bull. Math. Biol., 70 (2008), 1570-1607. doi: 10.1007/s11538-008-9322-5.  Google Scholar

[28]

Johann Ambrosius Barth Verlag, Heidelberg/Leipzig, 1995.  Google Scholar

[29]

J. Math. Anal. Appl., 348 (2008), 708-729. doi: 10.1016/j.jmaa.2008.07.071.  Google Scholar

[30]

Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426.  Google Scholar

[31]

J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[32]

Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

[1]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[2]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[3]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[4]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[5]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[6]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[7]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[8]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[9]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[10]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[11]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[12]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[13]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[14]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[15]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[16]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[17]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3031-3043. doi: 10.3934/dcds.2020396

[18]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[19]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[20]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]