\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a comparison method to reaction-diffusion systems and its applications to chemotaxis

Abstract Related Papers Cited by
  • In this paper we consider a general system of reaction-diffusion equations and introduce a comparison method to obtain qualitative properties of its solutions. The comparison method is applied to study the stability of homogeneous steady states and the asymptotic behavior of the solutions of different systems with a chemotactic term. The theoretical results obtained are slightly modified to be applied to the problems where the systems are coupled in the differentiated terms and / or contain nonlocal terms. We obtain results concerning the global stability of the steady states by comparison with solutions of Ordinary Differential Equations.
    Mathematics Subject Classification: Primary: 35B35, 35B40; Secondary: 35B51.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Ahmad, Convergence and ultimate bound of solutions of the nonautonomous Volterra-Lotka Competition Equations, J. Math. Anal. and Appl., 127 (1987), 377-387.doi: 10.1016/0022-247X(87)90116-8.

    [2]

    S. Ahmad, On the nonautonomous Volterra-Lotka competition equations, Proc. American Math. Society, 117 (1993), 199-204.doi: 10.1090/S0002-9939-1993-1143013-3.

    [3]

    S. Ahmad, Extintion of species in nonautonomous Volterra-Lotka systems, Proc. American Math. Society, 127 (1999), 2905-2910.doi: 10.1090/S0002-9939-99-05083-2.

    [4]

    S. Ahmad and A. C. Lazer, Necessary and sufficient average growth in a Lotka-Volterra system, Nonlinear Analysis, 13 (1998), 263-284.doi: 10.1016/S0362-546X(97)00602-0.

    [5]

    M. Braun, Differential Equations and Their Applications, An introduction to applied mathematics. Fourth edition. Texts in Applied Mathematics, 11. Springer-Verlag, New York, 1993.

    [6]

    A. Derlet and P. Takáč, A quasilinear parabolic model for population evolution, Differential equations and Applications, 4 (2012), 121-136.doi: 10.7153/dea-04-08.

    [7]

    A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.doi: 10.1016/S0022-247X(02)00147-6.

    [8]

    M. Negreanu and J. I. Tello, On a Parabolic-Elliptic chemotactic system with non-constant chemotactic sensitivity, Nonlinear Analysis: Theory, Methods & Applications, 80 (2013), 1-13.doi: 10.1016/j.na.2012.12.004.

    [9]

    M. Negreanu and J. I. Tello, On a competitive system under chemotactic effects with non-local terms, Nonlinearity, 26 (2013), 1086-1103.doi: 10.1088/0951-7715/26/4/1083.

    [10]

    C. V. Pao, Comparison methods and stability analysis of reaction-diffusion systems, In the book Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math., 162, pp 277-292. Dekker, New York, 1994.

    [11]

    P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Verlag, Basel, 2007.

    [12]

    P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29 (1998), 1301-1334.doi: 10.1137/S0036141097318900.

    [13]

    P. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Diff. Equat., 153 (1999), 374-406.doi: 10.1006/jdeq.1998.3535.

    [14]

    C. Stinner, J. I. Tello and M. Winkler, Competitive exclusion in a two species chemotaxis model, J. Math. Biology, (2013).doi: 10.1007/s00285-013-0681-7.

    [15]

    J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877.doi: 10.1080/03605300701319003.

    [16]

    J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.doi: 10.1088/0951-7715/25/5/1413.

    [17]

    S. Zheng and H. Su, A quasilinear reaction-diffusion system coupled via nonlocal sources, Applied Mathematics and Computation, 180 (2006), 295-308.doi: 10.1016/j.amc.2005.12.020.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return