-
Previous Article
Numerical simulation of chemotaxis models on stationary surfaces
- DCDS-B Home
- This Issue
-
Next Article
Well-posedness for a model of individual clustering
On a comparison method to reaction-diffusion systems and its applications to chemotaxis
1. | Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain |
2. | Departamento de Matemática Aplicada, ETSI SI, Universidad Politécnica de Madrid, 28031 Madrid, Spain |
References:
[1] |
J. Math. Anal. and Appl., 127 (1987), 377-387.
doi: 10.1016/0022-247X(87)90116-8. |
[2] |
Proc. American Math. Society, 117 (1993), 199-204.
doi: 10.1090/S0002-9939-1993-1143013-3. |
[3] |
Proc. American Math. Society, 127 (1999), 2905-2910.
doi: 10.1090/S0002-9939-99-05083-2. |
[4] |
Nonlinear Analysis, 13 (1998), 263-284.
doi: 10.1016/S0362-546X(97)00602-0. |
[5] |
An introduction to applied mathematics. Fourth edition. Texts in Applied Mathematics, 11. Springer-Verlag, New York, 1993. |
[6] |
Differential equations and Applications, 4 (2012), 121-136.
doi: 10.7153/dea-04-08. |
[7] |
J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6. |
[8] |
Nonlinear Analysis: Theory, Methods & Applications, 80 (2013), 1-13.
doi: 10.1016/j.na.2012.12.004. |
[9] |
Nonlinearity, 26 (2013), 1086-1103.
doi: 10.1088/0951-7715/26/4/1083. |
[10] |
In the book Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math., 162, pp 277-292. Dekker, New York, 1994. |
[11] |
Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Verlag, Basel, 2007. |
[12] |
SIAM J. Math. Anal., 29 (1998), 1301-1334.
doi: 10.1137/S0036141097318900. |
[13] |
J. Diff. Equat., 153 (1999), 374-406.
doi: 10.1006/jdeq.1998.3535. |
[14] |
J. Math. Biology, (2013).
doi: 10.1007/s00285-013-0681-7. |
[15] |
Communications in Partial Differential Equations, 32 (2007), 849-877.
doi: 10.1080/03605300701319003. |
[16] |
Nonlinearity, 25 (2012), 1413-1425.
doi: 10.1088/0951-7715/25/5/1413. |
[17] |
Applied Mathematics and Computation, 180 (2006), 295-308.
doi: 10.1016/j.amc.2005.12.020. |
show all references
References:
[1] |
J. Math. Anal. and Appl., 127 (1987), 377-387.
doi: 10.1016/0022-247X(87)90116-8. |
[2] |
Proc. American Math. Society, 117 (1993), 199-204.
doi: 10.1090/S0002-9939-1993-1143013-3. |
[3] |
Proc. American Math. Society, 127 (1999), 2905-2910.
doi: 10.1090/S0002-9939-99-05083-2. |
[4] |
Nonlinear Analysis, 13 (1998), 263-284.
doi: 10.1016/S0362-546X(97)00602-0. |
[5] |
An introduction to applied mathematics. Fourth edition. Texts in Applied Mathematics, 11. Springer-Verlag, New York, 1993. |
[6] |
Differential equations and Applications, 4 (2012), 121-136.
doi: 10.7153/dea-04-08. |
[7] |
J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6. |
[8] |
Nonlinear Analysis: Theory, Methods & Applications, 80 (2013), 1-13.
doi: 10.1016/j.na.2012.12.004. |
[9] |
Nonlinearity, 26 (2013), 1086-1103.
doi: 10.1088/0951-7715/26/4/1083. |
[10] |
In the book Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math., 162, pp 277-292. Dekker, New York, 1994. |
[11] |
Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Verlag, Basel, 2007. |
[12] |
SIAM J. Math. Anal., 29 (1998), 1301-1334.
doi: 10.1137/S0036141097318900. |
[13] |
J. Diff. Equat., 153 (1999), 374-406.
doi: 10.1006/jdeq.1998.3535. |
[14] |
J. Math. Biology, (2013).
doi: 10.1007/s00285-013-0681-7. |
[15] |
Communications in Partial Differential Equations, 32 (2007), 849-877.
doi: 10.1080/03605300701319003. |
[16] |
Nonlinearity, 25 (2012), 1413-1425.
doi: 10.1088/0951-7715/25/5/1413. |
[17] |
Applied Mathematics and Computation, 180 (2006), 295-308.
doi: 10.1016/j.amc.2005.12.020. |
[1] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[2] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[3] |
Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021103 |
[4] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[5] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[6] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[7] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[8] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[9] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[10] |
Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233 |
[11] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[12] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064 |
[13] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
[14] |
Wenbin Yang, Yujing Gao, Xiaojuan Wang. Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021090 |
[15] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[16] |
Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003 |
[17] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021029 |
[18] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[19] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[20] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]