December  2013, 18(10): 2689-2704. doi: 10.3934/dcdsb.2013.18.2689

Numerical simulation of chemotaxis models on stationary surfaces

1. 

Institut für Angewandte Mathematik, TU Dortmund, 44227 Dortmund, Germany, Germany, Germany

Received  November 2012 Revised  April 2013 Published  October 2013

In this paper we present an implicit finite element method for a class of chemotaxis models, where a new linearized flux-corrected transport (FCT) algorithm is modified in such a way as to keep the density of on-surface living cells nonnegative. Level set techniques are adopted for an implicit description of the surface and for the numerical treatment of the corresponding system of partial differential equations. The presented scheme is able to deliver a robust and accurate solution for a large class of chemotaxis-driven models. The numerical behavior of the proposed scheme is tested on the blow-up model on a sphere and an ellipsoid and on the pattern-forming dynamics model of Escherichia coli on a sphere.
Citation: Andriy Sokolov, Robert Strehl, Stefan Turek. Numerical simulation of chemotaxis models on stationary surfaces. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2689-2704. doi: 10.3934/dcdsb.2013.18.2689
References:
[1]

J. London Math. Soc., 74 (2006), 453-474. doi: 10.1112/S0024610706023015.  Google Scholar

[2]

Scientiae Mathematicae Japonicae, 59 (2004), 577-590.  Google Scholar

[3]

J. Theor. Med., 6 (2005), 1-19. doi: 10.1080/1027366042000327098.  Google Scholar

[4]

Journal of Theoretical Medicine, 2 (2000), 129-154. doi: 10.1080/10273660008833042.  Google Scholar

[5]

J. Math. Biol., 61 (2010), 649-663. doi: 10.1007/s00285-009-0315-2.  Google Scholar

[6]

ACTA Biotheoretica, 43 (1995), 387-402. doi: 10.1007/BF00713561.  Google Scholar

[7]

Bulletin of Mathematical Biology, 60 (1998), 857-900. Google Scholar

[8]

Journal of Neuro-Oncology, 50 (2000), 37-51. Google Scholar

[9]

IMA Journal of Mathematics Applied in Medicine and Biology, 10 (1993), 149-168. doi: 10.1093/imammb/10.3.149.  Google Scholar

[10]

Numer. Math., 111 (2008), 169-205. doi: 10.1007/s00211-008-0188-0.  Google Scholar

[11]

Milan J. Math., 72 (2004), 1-28. doi: 10.1007/s00032-003-0026-x.  Google Scholar

[12]

Mathematical and Computer Modelling, 47 (2008), 755-764. doi: 10.1016/j.mcm.2007.06.005.  Google Scholar

[13]

Interfaces and Free Boundaries, 10 (2008), 119-138. doi: 10.4171/IFB/182.  Google Scholar

[14]

J. Comput. Appl. Math., 224 (2009), 168-181. doi: 10.1016/j.cam.2008.04.030.  Google Scholar

[15]

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model,, SIAM J. Numer. Anal., 47 (): 386.  doi: 10.1137/07070423X.  Google Scholar

[16]

Numer. Math., 104 (2006), 457-488. doi: 10.1007/s00211-006-0024-3.  Google Scholar

[17]

R-Report, Institut fuer Angewandte Analysis und Stochastik (IAAS), Berlin, 1993. Google Scholar

[18]

Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106.  Google Scholar

[19]

Phys. Rev. Lett., 90 118101 (2003) [4 pages]. doi: 10.1103/PhysRevLett.90.118101.  Google Scholar

[20]

J. Nonlinear Sci., 21 (2011), 231-270. doi: 10.1007/s00332-010-9082-x.  Google Scholar

[21]

Journal für die Reine und angewandte Mathematik (Crelle's Journal), 654 (2011), 83-124. doi: 10.1515/CRELLE.2011.030.  Google Scholar

[22]

European Journal of Applied Mathematics, 12, (2001), 159-177. doi: 10.1017/S0956792501004363.  Google Scholar

[23]

Journal of Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[24]

J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[25]

J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[26]

Springer, 2nd edition, 2012. Google Scholar

[27]

in Flux-Corrected Transport: Principles, Algorithms, and Applications (Eds. D. Kuzmin, R. Löhner, S. Turek), Springer, Berlin (2005), 155-206. doi: 10.1007/3-540-27206-2_6.  Google Scholar

[28]

J. Comput. Phys., 175 (2002), 525-558. doi: 10.1006/jcph.2001.6955.  Google Scholar

[29]

J. Comput. Phys., 228 (2009), 2517-2534. doi: 10.1016/j.jcp.2008.12.011.  Google Scholar

[30]

Journal of Computational and Applied Mathematics, 236 (2012), 2317-2337. doi: 10.1016/j.cam.2011.11.019.  Google Scholar

[31]

J. Comput. Phys., 131 (1997), 327-353. Google Scholar

[32]

Physica A, 230 (1996), 499-543. Google Scholar

[33]

J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.  Google Scholar

[34]

Funkcialaj Ekvacioj, 44 (2001), 441-469.  Google Scholar

[35]

IMA J. Numer. Anal., 27 (2007), 332-365. doi: 10.1093/imanum/drl018.  Google Scholar

[36]

IMS Workshop on Reaction-Diffusion Systems (Shatin, 1999). Methods Appl. Anal., 8 (2001), 349-367.  Google Scholar

[37]

The EMBO Journal, 22 (2003), 1771-1779. doi: 10.1093/emboj/cdg176.  Google Scholar

[38]

Computational methods in applied mathematics, 10 (2010), 219-232. doi: 10.2478/cmam-2010-0013.  Google Scholar

[39]

Journal of Computational and Applied Mathematics, 239 (2013), 290-303. doi: 10.1016/j.cam.2012.09.041.  Google Scholar

[40]

Computers and Mathematics with Applications, 64 (2012), 175-189. doi: 10.1016/j.camwa.2011.12.040.  Google Scholar

[41]

Springer, Berlin, 1999. doi: 10.1007/3-540-48092-7.  Google Scholar

[42]

Proc. R. Soc. Lond. B, 266 (1999), 299-304. doi: 10.1098/rspb.1999.0637.  Google Scholar

[43]

J. Math. Biol., 38 (1999), 359-375. doi: 10.1007/s002850050153.  Google Scholar

[44]

J. Math. Biol., 41 (2000), 455-475. doi: 10.1007/s002850000038.  Google Scholar

[45]

J. R. Soc. Interface, 9 (2012), 3027-3044. doi: 10.1098/rsif.2012.0276.  Google Scholar

[46]

J. Biomech, 44 (2011), 359-364. Google Scholar

[47]

J. Comput. Phys., 31 (1979), 335-362. doi: 10.1016/0021-9991(79)90051-2.  Google Scholar

show all references

References:
[1]

J. London Math. Soc., 74 (2006), 453-474. doi: 10.1112/S0024610706023015.  Google Scholar

[2]

Scientiae Mathematicae Japonicae, 59 (2004), 577-590.  Google Scholar

[3]

J. Theor. Med., 6 (2005), 1-19. doi: 10.1080/1027366042000327098.  Google Scholar

[4]

Journal of Theoretical Medicine, 2 (2000), 129-154. doi: 10.1080/10273660008833042.  Google Scholar

[5]

J. Math. Biol., 61 (2010), 649-663. doi: 10.1007/s00285-009-0315-2.  Google Scholar

[6]

ACTA Biotheoretica, 43 (1995), 387-402. doi: 10.1007/BF00713561.  Google Scholar

[7]

Bulletin of Mathematical Biology, 60 (1998), 857-900. Google Scholar

[8]

Journal of Neuro-Oncology, 50 (2000), 37-51. Google Scholar

[9]

IMA Journal of Mathematics Applied in Medicine and Biology, 10 (1993), 149-168. doi: 10.1093/imammb/10.3.149.  Google Scholar

[10]

Numer. Math., 111 (2008), 169-205. doi: 10.1007/s00211-008-0188-0.  Google Scholar

[11]

Milan J. Math., 72 (2004), 1-28. doi: 10.1007/s00032-003-0026-x.  Google Scholar

[12]

Mathematical and Computer Modelling, 47 (2008), 755-764. doi: 10.1016/j.mcm.2007.06.005.  Google Scholar

[13]

Interfaces and Free Boundaries, 10 (2008), 119-138. doi: 10.4171/IFB/182.  Google Scholar

[14]

J. Comput. Appl. Math., 224 (2009), 168-181. doi: 10.1016/j.cam.2008.04.030.  Google Scholar

[15]

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model,, SIAM J. Numer. Anal., 47 (): 386.  doi: 10.1137/07070423X.  Google Scholar

[16]

Numer. Math., 104 (2006), 457-488. doi: 10.1007/s00211-006-0024-3.  Google Scholar

[17]

R-Report, Institut fuer Angewandte Analysis und Stochastik (IAAS), Berlin, 1993. Google Scholar

[18]

Math. Nachr., 195 (1998), 77-114. doi: 10.1002/mana.19981950106.  Google Scholar

[19]

Phys. Rev. Lett., 90 118101 (2003) [4 pages]. doi: 10.1103/PhysRevLett.90.118101.  Google Scholar

[20]

J. Nonlinear Sci., 21 (2011), 231-270. doi: 10.1007/s00332-010-9082-x.  Google Scholar

[21]

Journal für die Reine und angewandte Mathematik (Crelle's Journal), 654 (2011), 83-124. doi: 10.1515/CRELLE.2011.030.  Google Scholar

[22]

European Journal of Applied Mathematics, 12, (2001), 159-177. doi: 10.1017/S0956792501004363.  Google Scholar

[23]

Journal of Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022.  Google Scholar

[24]

J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[25]

J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[26]

Springer, 2nd edition, 2012. Google Scholar

[27]

in Flux-Corrected Transport: Principles, Algorithms, and Applications (Eds. D. Kuzmin, R. Löhner, S. Turek), Springer, Berlin (2005), 155-206. doi: 10.1007/3-540-27206-2_6.  Google Scholar

[28]

J. Comput. Phys., 175 (2002), 525-558. doi: 10.1006/jcph.2001.6955.  Google Scholar

[29]

J. Comput. Phys., 228 (2009), 2517-2534. doi: 10.1016/j.jcp.2008.12.011.  Google Scholar

[30]

Journal of Computational and Applied Mathematics, 236 (2012), 2317-2337. doi: 10.1016/j.cam.2011.11.019.  Google Scholar

[31]

J. Comput. Phys., 131 (1997), 327-353. Google Scholar

[32]

Physica A, 230 (1996), 499-543. Google Scholar

[33]

J. Inequal. Appl., 6 (2001), 37-55. doi: 10.1155/S1025583401000042.  Google Scholar

[34]

Funkcialaj Ekvacioj, 44 (2001), 441-469.  Google Scholar

[35]

IMA J. Numer. Anal., 27 (2007), 332-365. doi: 10.1093/imanum/drl018.  Google Scholar

[36]

IMS Workshop on Reaction-Diffusion Systems (Shatin, 1999). Methods Appl. Anal., 8 (2001), 349-367.  Google Scholar

[37]

The EMBO Journal, 22 (2003), 1771-1779. doi: 10.1093/emboj/cdg176.  Google Scholar

[38]

Computational methods in applied mathematics, 10 (2010), 219-232. doi: 10.2478/cmam-2010-0013.  Google Scholar

[39]

Journal of Computational and Applied Mathematics, 239 (2013), 290-303. doi: 10.1016/j.cam.2012.09.041.  Google Scholar

[40]

Computers and Mathematics with Applications, 64 (2012), 175-189. doi: 10.1016/j.camwa.2011.12.040.  Google Scholar

[41]

Springer, Berlin, 1999. doi: 10.1007/3-540-48092-7.  Google Scholar

[42]

Proc. R. Soc. Lond. B, 266 (1999), 299-304. doi: 10.1098/rspb.1999.0637.  Google Scholar

[43]

J. Math. Biol., 38 (1999), 359-375. doi: 10.1007/s002850050153.  Google Scholar

[44]

J. Math. Biol., 41 (2000), 455-475. doi: 10.1007/s002850000038.  Google Scholar

[45]

J. R. Soc. Interface, 9 (2012), 3027-3044. doi: 10.1098/rsif.2012.0276.  Google Scholar

[46]

J. Biomech, 44 (2011), 359-364. Google Scholar

[47]

J. Comput. Phys., 31 (1979), 335-362. doi: 10.1016/0021-9991(79)90051-2.  Google Scholar

[1]

Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021010

[2]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[3]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[4]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[5]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[6]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[7]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[8]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[9]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[10]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[11]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[12]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[13]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[14]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[15]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[16]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[17]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[18]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[19]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[20]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (126)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]