
Previous Article
Global dynamics and bifurcations in a fourdimensional replicator system
 DCDSB Home
 This Issue
 Next Article
On the spectrum of the superposition of separated potentials.
1.  Drexel University, Department of Mathematics, 3141 Chestnut Ave, Philadelphia, PA 19104, United States 
References:
show all references
References:
[1] 
Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$curvature. Electronic Research Announcements, 2013, 20: 4350. doi: 10.3934/era.2013.20.43 
[2] 
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems  A, 1998, 4 (1) : 7390. doi: 10.3934/dcds.1998.4.73 
[3] 
François Hamel, Emmanuel Russ, Nikolai Nadirashvili. Comparisons of eigenvalues of second order elliptic operators. Conference Publications, 2007, 2007 (Special) : 477486. doi: 10.3934/proc.2007.2007.477 
[4] 
Miklós Horváth, Márton Kiss. A bound for ratios of eigenvalues of Schrodinger operators on the real line. Conference Publications, 2005, 2005 (Special) : 403409. doi: 10.3934/proc.2005.2005.403 
[5] 
John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475488. doi: 10.3934/amc.2016019 
[6] 
Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725748. doi: 10.3934/ipi.2015.9.725 
[7] 
Joyce R. McLaughlin and Arturo Portnoy. Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force. Electronic Research Announcements, 1997, 3: 7277. 
[8] 
John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 129. doi: 10.3934/eect.2019001 
[9] 
Younghun Hong. Strichartz estimates for $N$body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems  A, 2017, 37 (10) : 53555365. doi: 10.3934/dcds.2017233 
[10] 
Niels Jacob, FengYu Wang. Higher order eigenvalues for nonlocal Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191208. doi: 10.3934/cpaa.2018012 
[11] 
Marta GarcíaHuidobro, Raul Manásevich, J. R. Ward. Vector pLaplacian like operators, pseudoeigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems  A, 2007, 19 (2) : 299321. doi: 10.3934/dcds.2007.19.299 
[12] 
Wenxian Shen, Xiaoxia Xie. On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. Discrete & Continuous Dynamical Systems  A, 2015, 35 (4) : 16651696. doi: 10.3934/dcds.2015.35.1665 
[13] 
Raz Kupferman, Asaf Shachar. On strain measures and the geodesic distance to $SO_n$ in the general linear group. Journal of Geometric Mechanics, 2016, 8 (4) : 437460. doi: 10.3934/jgm.2016015 
[14] 
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems  A, 2005, 13 (3) : 623635. doi: 10.3934/dcds.2005.13.623 
[15] 
Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 116. doi: 10.3934/jimo.2019041 
[16] 
Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro. Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours. Networks & Heterogeneous Media, 2018, 13 (1) : 126. doi: 10.3934/nhm.2018001 
[17] 
Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the VlasovPoissonBoltzmann system. Discrete & Continuous Dynamical Systems  A, 1999, 5 (3) : 457472. doi: 10.3934/dcds.1999.5.457 
[18] 
Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via AubryMather theory. Discrete & Continuous Dynamical Systems  A, 2007, 17 (4) : 807819. doi: 10.3934/dcds.2007.17.807 
[19] 
Igor Chueshov, Irena Lasiecka, Justin Webster. Flowplate interactions: Wellposedness and longtime behavior. Discrete & Continuous Dynamical Systems  S, 2014, 7 (5) : 925965. doi: 10.3934/dcdss.2014.7.925 
[20] 
Ian Johnson, Evelyn Sander, Thomas Wanner. Branch interactions and longterm dynamics for the diblock copolymer model in one dimension. Discrete & Continuous Dynamical Systems  A, 2013, 33 (8) : 36713705. doi: 10.3934/dcds.2013.33.3671 
2017 Impact Factor: 0.972
Tools
Metrics
Other articles
by authors
[Back to Top]