March  2013, 18(2): 295-312. doi: 10.3934/dcdsb.2013.18.295

Galerkin finite element methods for semilinear elliptic differential inclusions

1. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld

2. 

Institut für Mathematik, Universität Frankfurt, Postfach 111932, D-60054 Frankfurt a.M., Germany

Received  January 2012 Revised  May 2012 Published  November 2012

In this paper we consider Galerkin finite element discretizations of semilinear elliptic differential inclusions that satisfy a relaxed one-sided Lipschitz condition. The properties of the set-valued Nemytskii operators are discussed, and it is shown that the solution sets of both, the continuous and the discrete system, are nonempty, closed, bounded, and connected sets in $H^1$-norm. Moreover, the solution sets of the Galerkin inclusion converge with respect to the Hausdorff distance measured in $L^p$-spaces.
Citation: Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).   Google Scholar

[2]

J. Appell and P. P. Zabrejko, "Nonlinear Superposition Operators,", \textbf{95} of Cambridge Tracts in Mathematics Cambridge University Press, 95 (1990).   Google Scholar

[3]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Birkhäuser, (1990).   Google Scholar

[4]

W.-J. Beyn and J. Rieger, An implicit function theorem for one-sided Lipschitz mappings,, Set-Valued and Variational Analysis, 19 (2011), 343.   Google Scholar

[5]

W.-J. Beyn and J. Rieger, The implicit Euler scheme for one-sided Lipschitz differential inclusions,, Disc. Cont. Dyn. Sys. B, 14 (2010), 409.  doi: 10.3934/dcdsb.2010.14.409.  Google Scholar

[6]

D. Braess, "Finite Elements,", Cambridge University Press, (1997).   Google Scholar

[7]

S. Carl and D. Motreanu, "Nonsmooth Variational Problems and their Inequalities,", Springer, (2007).   Google Scholar

[8]

T. Donchev, Properties of one sided Lipschitz multivalued maps,, Nonlinear Analysis, 49 (2002), 13.   Google Scholar

[9]

L. C. Evans, "Partial Differential Equations,", \textbf{19} of Graduate Studies in Mathematics. American Mathematical Society, 19 (1998).   Google Scholar

[10]

L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis,", \textbf{9} of Series in Mathematical Analysis and Applications. Chapman & Hall/CRC, 9 (2006).   Google Scholar

[11]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis. Vol. II,", \textbf{500} of Mathematics and its Applications. Kluwer Academic Publishers, 500 (2000).   Google Scholar

[12]

S. Larsson and V. Thomée, "Partial Differential Equations with Numerical Methods,", Springer-Verlag, (2003).   Google Scholar

[13]

J. Rieger, Discretizations of linear elliptic partial differential inclusions,, Num. Funct. Anal. Opt., 32 (2011), 904.   Google Scholar

[14]

J. Rieger, Implementing Galerkin finite element methods for semilinear elliptic differential inclusions,, To appear in Comp. Meth. Appl. Math., ().   Google Scholar

[15]

W. Rudin, "Functional Analysis,", Mc Graw Hill, (2003).   Google Scholar

[16]

V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Number 25 in Springer Series in Computational Mathematics. Springer, (2006).   Google Scholar

[17]

M. Väth, Continuity, compactness, and degree theory for operators in systems involving $p$-Laplacians and inclusions,, J. Differential Equations, 245 (2008), 1137.   Google Scholar

[18]

R. Vinter, "Optimal Control,", Springer, (2000).   Google Scholar

[19]

E. Zeidler., "Nonlinear Functional Analysis and its Applications,", volume 2B. Springer, (1985).   Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1975).   Google Scholar

[2]

J. Appell and P. P. Zabrejko, "Nonlinear Superposition Operators,", \textbf{95} of Cambridge Tracts in Mathematics Cambridge University Press, 95 (1990).   Google Scholar

[3]

J.-P. Aubin and H. Frankowska, "Set-Valued Analysis,", Birkhäuser, (1990).   Google Scholar

[4]

W.-J. Beyn and J. Rieger, An implicit function theorem for one-sided Lipschitz mappings,, Set-Valued and Variational Analysis, 19 (2011), 343.   Google Scholar

[5]

W.-J. Beyn and J. Rieger, The implicit Euler scheme for one-sided Lipschitz differential inclusions,, Disc. Cont. Dyn. Sys. B, 14 (2010), 409.  doi: 10.3934/dcdsb.2010.14.409.  Google Scholar

[6]

D. Braess, "Finite Elements,", Cambridge University Press, (1997).   Google Scholar

[7]

S. Carl and D. Motreanu, "Nonsmooth Variational Problems and their Inequalities,", Springer, (2007).   Google Scholar

[8]

T. Donchev, Properties of one sided Lipschitz multivalued maps,, Nonlinear Analysis, 49 (2002), 13.   Google Scholar

[9]

L. C. Evans, "Partial Differential Equations,", \textbf{19} of Graduate Studies in Mathematics. American Mathematical Society, 19 (1998).   Google Scholar

[10]

L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis,", \textbf{9} of Series in Mathematical Analysis and Applications. Chapman & Hall/CRC, 9 (2006).   Google Scholar

[11]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis. Vol. II,", \textbf{500} of Mathematics and its Applications. Kluwer Academic Publishers, 500 (2000).   Google Scholar

[12]

S. Larsson and V. Thomée, "Partial Differential Equations with Numerical Methods,", Springer-Verlag, (2003).   Google Scholar

[13]

J. Rieger, Discretizations of linear elliptic partial differential inclusions,, Num. Funct. Anal. Opt., 32 (2011), 904.   Google Scholar

[14]

J. Rieger, Implementing Galerkin finite element methods for semilinear elliptic differential inclusions,, To appear in Comp. Meth. Appl. Math., ().   Google Scholar

[15]

W. Rudin, "Functional Analysis,", Mc Graw Hill, (2003).   Google Scholar

[16]

V. Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", Number 25 in Springer Series in Computational Mathematics. Springer, (2006).   Google Scholar

[17]

M. Väth, Continuity, compactness, and degree theory for operators in systems involving $p$-Laplacians and inclusions,, J. Differential Equations, 245 (2008), 1137.   Google Scholar

[18]

R. Vinter, "Optimal Control,", Springer, (2000).   Google Scholar

[19]

E. Zeidler., "Nonlinear Functional Analysis and its Applications,", volume 2B. Springer, (1985).   Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[7]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[13]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[19]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]