-
Previous Article
Optimal control of ODE systems involving a rate independent variational inequality
- DCDS-B Home
- This Issue
-
Next Article
Galerkin finite element methods for semilinear elliptic differential inclusions
Emergence of collective behavior in dynamical networks
1. | Russian Academy of Sci., Inst. for Information Transm. Problems, and Higher School of Economics, Moscow, Russian Federation |
References:
[1] |
M. Blank, "Discreteness and Continuity in Problems of Chaotic Dynamics,", American Mathematical Society, (1997).
|
[2] |
M. Blank, Generalized phase transitions in finite coupled map lattices,, Physica D, 103 (1997), 34.
|
[3] |
M. Blank, Perron-Frobenius spectrum for random maps and its approximation,, Moscow Math. J., 1 (2001), 315.
|
[4] |
M. Blank, On raw coding of chaotic dynamics,, Problems of Information Transmission, 42 (2006), 64.
doi: math.DS/0603575. |
[5] |
M. Blank, Self-consistent mappings and systems of interacting particles,, Doklady Akademii Nauk (Russia), 436 (2011), 295.
|
[6] |
M. Blank and L. Bunimovich, Multicomponent dynamical systems: SRB measures and phase transitions,, Nonlinearity, 16 (2003), 387.
doi: math.DS/0202200][10.1088/0951-7715/16/1/322. |
[7] |
M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905.
|
[8] |
J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems,, Comm. Math. Phys., 178 (1996), 703.
|
[9] |
L. A. Bunimovich and E. A. Carlen, On the problem of stability in lattice dynamical systems,, J. Diff. Eq., 123 (1995), 213.
|
[10] |
L. A. Bunimovich and Ya. G. Sinai, Spacetime chaos in coupled map lattices,, Nonlinearity, 1 (1988), 491.
|
[11] |
L. Bunimovich, Coupled map lattices: At the age of maturity,, Lect. Notes in Physics, 671 (2005), 9.
|
[12] |
G. Keller and C. Liverani, A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps,, Lecture Notes in Physics (Springer), 671 (2005), 115.
|
[13] |
I. P. Cornfeld, Ya. G. Sinai and S. V. Fomin, "Ergodic Theory,", New York: Springer, (1982).
|
[14] |
T. M. Liggett, "Interacting Particle Systems,", Springer, (2005).
|
[15] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge Univ. Press, (2001). Google Scholar |
[16] |
Wenlian Lu, Fatihcan M. Atay and Jurgen Jost, Synchronization of discrete-time dynamical networks with time-varying couplings,, SIAM J. on Mathematical Analysis, 39 (2007), 1231.
|
[17] |
Wu Chai Wah, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph,, Nonlinearity \textbf{18} (2005), 18 (2005), 1057.
doi: 10.1088/0951-7715/18/3/007. |
show all references
References:
[1] |
M. Blank, "Discreteness and Continuity in Problems of Chaotic Dynamics,", American Mathematical Society, (1997).
|
[2] |
M. Blank, Generalized phase transitions in finite coupled map lattices,, Physica D, 103 (1997), 34.
|
[3] |
M. Blank, Perron-Frobenius spectrum for random maps and its approximation,, Moscow Math. J., 1 (2001), 315.
|
[4] |
M. Blank, On raw coding of chaotic dynamics,, Problems of Information Transmission, 42 (2006), 64.
doi: math.DS/0603575. |
[5] |
M. Blank, Self-consistent mappings and systems of interacting particles,, Doklady Akademii Nauk (Russia), 436 (2011), 295.
|
[6] |
M. Blank and L. Bunimovich, Multicomponent dynamical systems: SRB measures and phase transitions,, Nonlinearity, 16 (2003), 387.
doi: math.DS/0202200][10.1088/0951-7715/16/1/322. |
[7] |
M. Blank, G. Keller and C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps,, Nonlinearity, 15 (2002), 1905.
|
[8] |
J. Bricmont and A. Kupiainen, High temperature expansions and dynamical systems,, Comm. Math. Phys., 178 (1996), 703.
|
[9] |
L. A. Bunimovich and E. A. Carlen, On the problem of stability in lattice dynamical systems,, J. Diff. Eq., 123 (1995), 213.
|
[10] |
L. A. Bunimovich and Ya. G. Sinai, Spacetime chaos in coupled map lattices,, Nonlinearity, 1 (1988), 491.
|
[11] |
L. Bunimovich, Coupled map lattices: At the age of maturity,, Lect. Notes in Physics, 671 (2005), 9.
|
[12] |
G. Keller and C. Liverani, A spectral gap for a one-dimensional lattice of coupled piecewise expanding interval maps,, Lecture Notes in Physics (Springer), 671 (2005), 115.
|
[13] |
I. P. Cornfeld, Ya. G. Sinai and S. V. Fomin, "Ergodic Theory,", New York: Springer, (1982).
|
[14] |
T. M. Liggett, "Interacting Particle Systems,", Springer, (2005).
|
[15] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,", Cambridge Univ. Press, (2001). Google Scholar |
[16] |
Wenlian Lu, Fatihcan M. Atay and Jurgen Jost, Synchronization of discrete-time dynamical networks with time-varying couplings,, SIAM J. on Mathematical Analysis, 39 (2007), 1231.
|
[17] |
Wu Chai Wah, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph,, Nonlinearity \textbf{18} (2005), 18 (2005), 1057.
doi: 10.1088/0951-7715/18/3/007. |
[1] |
V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901 |
[2] |
B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835 |
[3] |
Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315 |
[4] |
Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857 |
[5] |
V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263 |
[6] |
Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977 |
[7] |
Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 |
[8] |
Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234 |
[9] |
Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345 |
[10] |
Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469 |
[11] |
Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74. |
[12] |
Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295 |
[13] |
Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430 |
[14] |
Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure & Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425 |
[15] |
Lars Olsen. First return times: multifractal spectra and divergence points. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635 |
[16] |
Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129 |
[17] |
Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473 |
[18] |
Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049 |
[19] |
Vaughn Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electronic Research Announcements, 2010, 17: 1-11. doi: 10.3934/era.2010.17.1 |
[20] |
João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]