March  2013, 18(2): 331-348. doi: 10.3934/dcdsb.2013.18.331

Optimal control of ODE systems involving a rate independent variational inequality

1. 

Fakultät für Mathematik, TU München, Boltzmannstr. 3, D 85747 Garching bei München, Germany

2. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1

Received  December 2011 Revised  April 2012 Published  November 2012

This paper is concerned with an optimal control problem for a system of ordinary differential equations with rate independent hysteresis modelled as a rate independent evolution variational inequality with a closed convex constraint $Z\subset \mathbb{R}^m$. We prove existence of optimal solutions as well as necessary optimality conditions of first order. In particular, under certain regularity assumptions we completely characterize the jump behaviour of the adjoint.
Citation: Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331
References:
[1]

J.-J. Moreau, Problème d'evolution associé à un convexe mobile d'un espace hilbertien,, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973).   Google Scholar

[2]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space,, J. Diff. Eq., 26 (1977), 347.   Google Scholar

[3]

P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators,, in, 404 (1999), 47.   Google Scholar

[4]

A. Visintin, "Differential Models of Hysteresis,", Springer, (1994).   Google Scholar

[5]

P. Krejčí and Ph. Laurençcot, Generalized variational inequalities,, J. Convex Anal., 9 (2002), 159.   Google Scholar

[6]

P. Krejčí and M. Liero, Rate independent Kurzweil processes,, Appl. Math., 54 (2009), 89.   Google Scholar

[7]

M. Brokate, "Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ,", Verlag Peter D. Lang, (1987).   Google Scholar

[8]

M. Brokate, Optimal control of ODE systems with hysteresis nonlinearities,, in, 84 (1988), 25.   Google Scholar

[9]

M. Brokate, ODE control problems including the Preisach hysteresis operator: Necessary optimality conditions,, in, (1992), 51.   Google Scholar

[10]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, "Systems with Hysteresis,'', Nauka, (1983).   Google Scholar

[11]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, "Systems with Hysteresis,'', Springer, (1989).   Google Scholar

[12]

M. Brokate, Optimal control of systems described by ordinary differential equations with nonlinear characteristics of hysteresis type I.,, Translated from the German and with a Preface by V. B. Kolmanovskiĭ and N. I. Koroleva, 52 (1991), 89.   Google Scholar

[13]

M. Brokate, Optimal control of systems described by ordinary differential equations with nonlinear characteristics of hysteresis type II.,, Avtomat. i Telemekh., 53 (1992), 2.   Google Scholar

[14]

A. Bensoussan, K. Chandrasekharan and J. Turi, Optimal control of variational inequalities,, Commun. Inf. Syst., 10 (2010), 203.   Google Scholar

[15]

G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process,, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 117.   Google Scholar

[16]

F. Bagagiolo, An infinite horizon optimal control problem for some switching systems,, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 443.   Google Scholar

[17]

A. Gudovich and M. Quincampoix, Optimal control with hysteresis nonlinearity and multidimensional play operator,, SIAM J. Control Opt., 49 (2011), 788.  doi: 10.1137/090770011.  Google Scholar

[18]

F. Bagagiolo and M. Benetton, About an optimal visiting problem,, Appl. Math. Optim., 65 (2012), 31.   Google Scholar

[19]

R. B. Holmes, Smoothness of certain metric projections on Hilbert space,, Trans. Amer. Math. Soc., 184 (1973), 87.   Google Scholar

[20]

S. Fitzpatrick and R. R. Phelps, Differentiability of the metric projection in Hilbert space,, Trans. Amer. Math. Soc., 270 (1982), 483.   Google Scholar

[21]

M. C. Delfour and J.-P. Zolesio, "Shapes and Geometries. Analysis, Differential Calculus and Optimization,'', SIAM, (2001).   Google Scholar

show all references

References:
[1]

J.-J. Moreau, Problème d'evolution associé à un convexe mobile d'un espace hilbertien,, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973).   Google Scholar

[2]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space,, J. Diff. Eq., 26 (1977), 347.   Google Scholar

[3]

P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators,, in, 404 (1999), 47.   Google Scholar

[4]

A. Visintin, "Differential Models of Hysteresis,", Springer, (1994).   Google Scholar

[5]

P. Krejčí and Ph. Laurençcot, Generalized variational inequalities,, J. Convex Anal., 9 (2002), 159.   Google Scholar

[6]

P. Krejčí and M. Liero, Rate independent Kurzweil processes,, Appl. Math., 54 (2009), 89.   Google Scholar

[7]

M. Brokate, "Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ,", Verlag Peter D. Lang, (1987).   Google Scholar

[8]

M. Brokate, Optimal control of ODE systems with hysteresis nonlinearities,, in, 84 (1988), 25.   Google Scholar

[9]

M. Brokate, ODE control problems including the Preisach hysteresis operator: Necessary optimality conditions,, in, (1992), 51.   Google Scholar

[10]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, "Systems with Hysteresis,'', Nauka, (1983).   Google Scholar

[11]

M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, "Systems with Hysteresis,'', Springer, (1989).   Google Scholar

[12]

M. Brokate, Optimal control of systems described by ordinary differential equations with nonlinear characteristics of hysteresis type I.,, Translated from the German and with a Preface by V. B. Kolmanovskiĭ and N. I. Koroleva, 52 (1991), 89.   Google Scholar

[13]

M. Brokate, Optimal control of systems described by ordinary differential equations with nonlinear characteristics of hysteresis type II.,, Avtomat. i Telemekh., 53 (1992), 2.   Google Scholar

[14]

A. Bensoussan, K. Chandrasekharan and J. Turi, Optimal control of variational inequalities,, Commun. Inf. Syst., 10 (2010), 203.   Google Scholar

[15]

G. Colombo, R. Henrion, N. D. Hoang and B. S. Mordukhovich, Optimal control of the sweeping process,, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 117.   Google Scholar

[16]

F. Bagagiolo, An infinite horizon optimal control problem for some switching systems,, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 443.   Google Scholar

[17]

A. Gudovich and M. Quincampoix, Optimal control with hysteresis nonlinearity and multidimensional play operator,, SIAM J. Control Opt., 49 (2011), 788.  doi: 10.1137/090770011.  Google Scholar

[18]

F. Bagagiolo and M. Benetton, About an optimal visiting problem,, Appl. Math. Optim., 65 (2012), 31.   Google Scholar

[19]

R. B. Holmes, Smoothness of certain metric projections on Hilbert space,, Trans. Amer. Math. Soc., 184 (1973), 87.   Google Scholar

[20]

S. Fitzpatrick and R. R. Phelps, Differentiability of the metric projection in Hilbert space,, Trans. Amer. Math. Soc., 270 (1982), 483.   Google Scholar

[21]

M. C. Delfour and J.-P. Zolesio, "Shapes and Geometries. Analysis, Differential Calculus and Optimization,'', SIAM, (2001).   Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[10]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[11]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[15]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[16]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[19]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (28)

Other articles
by authors

[Back to Top]