January  2013, 18(1): 37-56. doi: 10.3934/dcdsb.2013.18.37

The basic reproduction number of discrete SIR and SEIS models with periodic parameters

1. 

School of Science, Shaanxi University of Science & Technology, Xi'an, 710021, China

2. 

Department of Mathematics, Xi'an Jiaotong University, Xi'an, 710049

Received  April 2011 Revised  May 2012 Published  September 2012

Seasonal fluctuations have been observed in many infectious diseases. Discrete epidemic models with periodic epidemiological parameters are formulated and studied to take into account seasonal variations of infectious diseases. The definition and the formula of the basic reproduction number $R_0$ are given by following the framework in [1,2,3,4,5]. Threshold results for a general model are obtained which show that the magnitude of $R_0$ determines whether the disease will go extinct (when $R_0<1$) or not (when $R_0>1$) in the population. Applications of these general results to discrete periodic SIR and SEIS models are demonstrated. The disease persistence and the existence of the positive periodic solution are established. Numerical explorations of the model properties are also presented via several examples including the calculations of the basic reproduction number, conditions for the disease extinction or persistence, and the existence of periodic solutions as well as its stability.
Citation: Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37
References:
[1]

O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious disease in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[2]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[3]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dyn. Diff. Equat., 20 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[4]

L. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models,, J. Difference Equations and Applications, 14 (2008), 1127.  doi: 10.1080/10236190802332308.  Google Scholar

[5]

N. Bacaër, Periodic matrix populaiton models: growth rate, basic reproduction number, and entropy,, Bull. Math. Biol., 71 (2009), 1781.  doi: 10.1007/s11538-009-9426-6.  Google Scholar

[6]

M. Keeling and P. Rohani, "Modeling Infectious Diseases in Humans and Animals,", Princeton University Press, (2008).   Google Scholar

[7]

Y. Zhou and H. Cao, Discrete tuberculosis transmission models and their application,, in, 57 (2010), 83.   Google Scholar

[8]

I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model,, J. Math. Biol., 18 (1983), 233.  doi: 10.1007/BF00276090.  Google Scholar

[9]

I. Schwartz, Small amplitude, long periodic outbreaks in seasonally driven epidemics,, J. Math. Biol., 30 (1992), 473.  doi: 10.1007/BF00160532.  Google Scholar

[10]

H. Smith, Multiple stable subharmonics for a periodic epidemic model,, J. Math. Biol., 17 (1983), 179.  doi: 10.1007/BF00305758.  Google Scholar

[11]

X. Zhao, "Dynamical Sytems in Population Biology,", Springer-Verlag, (2003).   Google Scholar

[12]

J. M. Cushing, A juvenile-adult model with periodic vital rates,, J. Math. Biol., 53 (2006), 520.  doi: 10.1007/s00285-006-0382-6.  Google Scholar

[13]

J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models,, Math. Biosci. Eng., 3 (2006), 161.   Google Scholar

[14]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067.  doi: 10.1007/s11538-006-9166-9.  Google Scholar

[15]

N. Bacaër and M. G. M. Gomes, On the final size of epidemics with seasonality,, Bull. Math. Biol., 71 (2009), 1954.  doi: 10.1007/s11538-009-9433-7.  Google Scholar

[16]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421.  doi: 10.1007/s00285-006-0015-0.  Google Scholar

[17]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy enviroment,, J. Math. Anal. Appl., 325 (2007), 496.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[18]

B. G. Williams and C. Dye, Infectious disease persistence when transmission varies seasonally,, Math. Biosci., 145 (1997), 77.  doi: 10.1016/S0025-5564(97)00039-4.  Google Scholar

[19]

H. R. Thieme, Renewal theorems for linear periodic Volterra integral equations,, J. Integral Equations, 7 (1984), 253.   Google Scholar

[20]

L. Allen, Some discrete-time SI, SIR, and SIS epidemic models,, Math. Biosci., 124 (1994), 83.  doi: 10.1016/0025-5564(94)90025-6.  Google Scholar

[21]

L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Math. Biosci., 163 (2000), 1.  doi: 10.1016/S0025-5564(99)00047-4.  Google Scholar

[22]

L. Allen, D. Flores, R. Ratnayake and J. Herbold, Discrete-time deterministic and stochastic models for the spread of rabies,, Appl. Math. Comput., 132 (2002), 271.  doi: 10.1016/S0096-3003(01)00192-8.  Google Scholar

[23]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with complex dynamics,, Nonliear Anal., 47 (2001), 4753.  doi: 10.1016/S0362-546X(01)00587-9.  Google Scholar

[24]

C. Castillo-Chavez and A. A. Yakubu, Dispersal, disease and life-history evolution,, Math. Biosci., 173 (2001), 35.  doi: 10.1016/S0025-5564(01)00065-7.  Google Scholar

[25]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with simple and complex population dynamics,, in, (2002), 153.   Google Scholar

[26]

Y. Zhou and P. Fergola, Dynamic of a discrete age-structured SIS models,, Discrete Contin. Dyn. Syst. Ser. B., 4 (2004), 843.   Google Scholar

[27]

Y. Zhou and Z. Ma, Global stability of a class of discrete age-structured SIS models with immigration,, Math. Biosci. Eng., 6 (2009), 409.   Google Scholar

[28]

X. Li and W. Wang, A discrete epidemic model with stage structure,, Chaos, 26 (2005), 947.   Google Scholar

[29]

J. E. Franke and A. A. Yakubu, Discrete-time SIS epidemic model in a seasonal environment,, SIAM J. Appl. Math., 66 (2006), 1563.  doi: 10.1137/050638345.  Google Scholar

[30]

Ira M. Longini, Jr., The generalized discrete-time epidemic model with immunity: Asynthesis,, Math. Biosci., 82 (1986), 19.  doi: 10.1016/0025-5564(86)90003-9.  Google Scholar

[31]

N. Bacaër and R. Ouifki, Growth rate and basic reproduction number for population models with a simple periodic factor,, Math. Biosci., 210 (2007), 647.  doi: 10.1016/j.mbs.2007.07.005.  Google Scholar

[32]

M. I. Gil, "Difference Equations in Normed Spaces Stability and Oscillations,", Elsevier Science, (2007).   Google Scholar

[33]

R. A. Horn and C. A. Johnson, "Matrix Analysis,", Cambridge University press, (1985).   Google Scholar

[34]

H. Smith and P. Waltman, "Theory of the Chemostat,", Cambridge University Press, (1995).   Google Scholar

[35]

P. Hess, "Periodic-Parabolic Boundary Value Problems and Positivity,", Pitman Research Notes in Mathematics, (1991).   Google Scholar

[36]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.   Google Scholar

[37]

X. Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications,, Commun. Appl. Nonlinear Anal., 3 (1996), 43.   Google Scholar

[38]

P. Salceanu and H. Smith, Persistence in a discrete-time, stage-structured epidemic model,, J. Difference Equa. Appl., 16 (2010), 73.  doi: 10.1080/10236190802400733.  Google Scholar

[39]

P. A. Gonzalez, R. A. Saenz, B. N. Sanchez, C. Castillo-Chavez and A. A. Yakubu, "Dispersal Between Two Patches in a Discrete Time SEIS Model,", MTBI technical Report, (2000).   Google Scholar

show all references

References:
[1]

O. Diekmann, J. Heesterbeek and J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in models for infectious disease in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[2]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[3]

W. Wang and X. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dyn. Diff. Equat., 20 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[4]

L. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models,, J. Difference Equations and Applications, 14 (2008), 1127.  doi: 10.1080/10236190802332308.  Google Scholar

[5]

N. Bacaër, Periodic matrix populaiton models: growth rate, basic reproduction number, and entropy,, Bull. Math. Biol., 71 (2009), 1781.  doi: 10.1007/s11538-009-9426-6.  Google Scholar

[6]

M. Keeling and P. Rohani, "Modeling Infectious Diseases in Humans and Animals,", Princeton University Press, (2008).   Google Scholar

[7]

Y. Zhou and H. Cao, Discrete tuberculosis transmission models and their application,, in, 57 (2010), 83.   Google Scholar

[8]

I. Schwartz and H. Smith, Infinite subharmonic bifurcation in an SIER epidemic model,, J. Math. Biol., 18 (1983), 233.  doi: 10.1007/BF00276090.  Google Scholar

[9]

I. Schwartz, Small amplitude, long periodic outbreaks in seasonally driven epidemics,, J. Math. Biol., 30 (1992), 473.  doi: 10.1007/BF00160532.  Google Scholar

[10]

H. Smith, Multiple stable subharmonics for a periodic epidemic model,, J. Math. Biol., 17 (1983), 179.  doi: 10.1007/BF00305758.  Google Scholar

[11]

X. Zhao, "Dynamical Sytems in Population Biology,", Springer-Verlag, (2003).   Google Scholar

[12]

J. M. Cushing, A juvenile-adult model with periodic vital rates,, J. Math. Biol., 53 (2006), 520.  doi: 10.1007/s00285-006-0382-6.  Google Scholar

[13]

J. Ma and Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models,, Math. Biosci. Eng., 3 (2006), 161.   Google Scholar

[14]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067.  doi: 10.1007/s11538-006-9166-9.  Google Scholar

[15]

N. Bacaër and M. G. M. Gomes, On the final size of epidemics with seasonality,, Bull. Math. Biol., 71 (2009), 1954.  doi: 10.1007/s11538-009-9433-7.  Google Scholar

[16]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421.  doi: 10.1007/s00285-006-0015-0.  Google Scholar

[17]

F. Zhang and X. Zhao, A periodic epidemic model in a patchy enviroment,, J. Math. Anal. Appl., 325 (2007), 496.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[18]

B. G. Williams and C. Dye, Infectious disease persistence when transmission varies seasonally,, Math. Biosci., 145 (1997), 77.  doi: 10.1016/S0025-5564(97)00039-4.  Google Scholar

[19]

H. R. Thieme, Renewal theorems for linear periodic Volterra integral equations,, J. Integral Equations, 7 (1984), 253.   Google Scholar

[20]

L. Allen, Some discrete-time SI, SIR, and SIS epidemic models,, Math. Biosci., 124 (1994), 83.  doi: 10.1016/0025-5564(94)90025-6.  Google Scholar

[21]

L. Allen and A. Burgin, Comparison of deterministic and stochastic SIS and SIR models in discrete time,, Math. Biosci., 163 (2000), 1.  doi: 10.1016/S0025-5564(99)00047-4.  Google Scholar

[22]

L. Allen, D. Flores, R. Ratnayake and J. Herbold, Discrete-time deterministic and stochastic models for the spread of rabies,, Appl. Math. Comput., 132 (2002), 271.  doi: 10.1016/S0096-3003(01)00192-8.  Google Scholar

[23]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with complex dynamics,, Nonliear Anal., 47 (2001), 4753.  doi: 10.1016/S0362-546X(01)00587-9.  Google Scholar

[24]

C. Castillo-Chavez and A. A. Yakubu, Dispersal, disease and life-history evolution,, Math. Biosci., 173 (2001), 35.  doi: 10.1016/S0025-5564(01)00065-7.  Google Scholar

[25]

C. Castillo-Chavez and A. A. Yakubu, Discrete-time SIS models with simple and complex population dynamics,, in, (2002), 153.   Google Scholar

[26]

Y. Zhou and P. Fergola, Dynamic of a discrete age-structured SIS models,, Discrete Contin. Dyn. Syst. Ser. B., 4 (2004), 843.   Google Scholar

[27]

Y. Zhou and Z. Ma, Global stability of a class of discrete age-structured SIS models with immigration,, Math. Biosci. Eng., 6 (2009), 409.   Google Scholar

[28]

X. Li and W. Wang, A discrete epidemic model with stage structure,, Chaos, 26 (2005), 947.   Google Scholar

[29]

J. E. Franke and A. A. Yakubu, Discrete-time SIS epidemic model in a seasonal environment,, SIAM J. Appl. Math., 66 (2006), 1563.  doi: 10.1137/050638345.  Google Scholar

[30]

Ira M. Longini, Jr., The generalized discrete-time epidemic model with immunity: Asynthesis,, Math. Biosci., 82 (1986), 19.  doi: 10.1016/0025-5564(86)90003-9.  Google Scholar

[31]

N. Bacaër and R. Ouifki, Growth rate and basic reproduction number for population models with a simple periodic factor,, Math. Biosci., 210 (2007), 647.  doi: 10.1016/j.mbs.2007.07.005.  Google Scholar

[32]

M. I. Gil, "Difference Equations in Normed Spaces Stability and Oscillations,", Elsevier Science, (2007).   Google Scholar

[33]

R. A. Horn and C. A. Johnson, "Matrix Analysis,", Cambridge University press, (1985).   Google Scholar

[34]

H. Smith and P. Waltman, "Theory of the Chemostat,", Cambridge University Press, (1995).   Google Scholar

[35]

P. Hess, "Periodic-Parabolic Boundary Value Problems and Positivity,", Pitman Research Notes in Mathematics, (1991).   Google Scholar

[36]

H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations,, J. Math. Biol., 30 (1992), 755.   Google Scholar

[37]

X. Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications,, Commun. Appl. Nonlinear Anal., 3 (1996), 43.   Google Scholar

[38]

P. Salceanu and H. Smith, Persistence in a discrete-time, stage-structured epidemic model,, J. Difference Equa. Appl., 16 (2010), 73.  doi: 10.1080/10236190802400733.  Google Scholar

[39]

P. A. Gonzalez, R. A. Saenz, B. N. Sanchez, C. Castillo-Chavez and A. A. Yakubu, "Dispersal Between Two Patches in a Discrete Time SEIS Model,", MTBI technical Report, (2000).   Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[3]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[4]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[18]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (177)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]