March  2013, 18(2): 417-435. doi: 10.3934/dcdsb.2013.18.417

Reduction and identification of dynamic models. Simple example: Generic receptor model

1. 

Department of Mathematics and Physics, Lappeenranta University of Technology, P.O.Box 20, FIN-53851 Lappeenranta, Finland

2. 

32 Campus Drive, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812

3. 

Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland

Received  March 2011 Revised  January 2012 Published  November 2012

Identification of biological models is often complicated by the fact that the available experimental data from field measurements is noisy or incomplete. Moreover, models may be complex, and contain a large number of correlated parameters. As a result, the parameters are poorly identified by the data, and the reliability of the model predictions is questionable. We consider a general scheme for reduction and identification of dynamic models using two modern approaches, Markov chain Monte Carlo sampling methods together with asymptotic model reduction techniques. The ideas are illustrated using a simple example related to bio-medical applications: a model of a generic receptor. In this paper we want to point out what the researchers working in biological, medical, etc., fields should look for in order to identify such problematic situations in modelling, and how to overcome these problems.
Citation: Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417
References:
[1]

Y. Bard, "Nonlinear Parameter Estimation," Academic Press, New York - London, 1974.

[2]

A. Gelman and J. Carlin, "Bayesian Data Analysis," $2^{nd}$ edition, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[3]

H. Haario, E. Saksman and J. Tamminen, An adaptive metropolis algorithm, Bernoulli, 7 (2001), 223-242. doi: 10.2307/3318737.

[4]

H. Haario, M. Laine, A. Mira and E. Saksman, DRAM: Efficient adaptive MCMC, Stat. Comput., 16 (2006), 339-354. doi: 10.1007/s11222-006-9438-0.

[5]

H. Haario, L. Kalachev and M. Laine, Reduced Models for Algae Growth, Bull. Math. Biol., 71 (2009), 1626-1648. doi: 10.1007/s11538-009-9417-7.

[6]

J. Kevorkian and J. Cole, "Singular Perturbation Methods in Applied Mathematics," Springer-Verlag, Berlin-Heidelberg-New York, 1981.

[7]

J. Murray, "Mathematical Biology," $2^{nd}$ edition, Springer-Verlag, Berlin-Heidelberg-New York, 1993. doi: 10.1007/b98869.

[8]

R. O'Malley, "Singular Perturbations Methods for Ordinary Differential Equations," Springer-Verlag, Berlin-Heidelberg-New York, 1991. doi: 10.1007/978-1-4612-0977-5.

[9]

A. Vasil'eva, V. Butuzov and L. Kalachev, "The Boundary Function Method for Singular Perturbation Problems," SIAM, Philadelphia, PA, 1995. doi: 10.1137/1.9781611970784.

show all references

References:
[1]

Y. Bard, "Nonlinear Parameter Estimation," Academic Press, New York - London, 1974.

[2]

A. Gelman and J. Carlin, "Bayesian Data Analysis," $2^{nd}$ edition, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[3]

H. Haario, E. Saksman and J. Tamminen, An adaptive metropolis algorithm, Bernoulli, 7 (2001), 223-242. doi: 10.2307/3318737.

[4]

H. Haario, M. Laine, A. Mira and E. Saksman, DRAM: Efficient adaptive MCMC, Stat. Comput., 16 (2006), 339-354. doi: 10.1007/s11222-006-9438-0.

[5]

H. Haario, L. Kalachev and M. Laine, Reduced Models for Algae Growth, Bull. Math. Biol., 71 (2009), 1626-1648. doi: 10.1007/s11538-009-9417-7.

[6]

J. Kevorkian and J. Cole, "Singular Perturbation Methods in Applied Mathematics," Springer-Verlag, Berlin-Heidelberg-New York, 1981.

[7]

J. Murray, "Mathematical Biology," $2^{nd}$ edition, Springer-Verlag, Berlin-Heidelberg-New York, 1993. doi: 10.1007/b98869.

[8]

R. O'Malley, "Singular Perturbations Methods for Ordinary Differential Equations," Springer-Verlag, Berlin-Heidelberg-New York, 1991. doi: 10.1007/978-1-4612-0977-5.

[9]

A. Vasil'eva, V. Butuzov and L. Kalachev, "The Boundary Function Method for Singular Perturbation Problems," SIAM, Philadelphia, PA, 1995. doi: 10.1137/1.9781611970784.

[1]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[2]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[3]

Juntao Yang, Viet Ha Hoang. Multilevel Markov Chain Monte Carlo for Bayesian inverse problem for Navier-Stokes equation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022033

[4]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[5]

A Voutilainen, Jari P. Kaipio. Model reduction and pollution source identification from remote sensing data. Inverse Problems and Imaging, 2009, 3 (4) : 711-730. doi: 10.3934/ipi.2009.3.711

[6]

Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034

[7]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[8]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[9]

Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014

[10]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks and Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[11]

Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a Leslie-Gower food chain model. Mathematical Biosciences & Engineering, 2009, 6 (3) : 585-590. doi: 10.3934/mbe.2009.6.585

[12]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial and Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[13]

Biswajit Sarkar, Arunava Majumder, Mitali Sarkar, Bikash Koli Dey, Gargi Roy. Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1085-1104. doi: 10.3934/jimo.2016063

[14]

Chandan Pathak, Saswati Mukherjee, Santanu Kumar Ghosh, Sudhansu Khanra. A three echelon supply chain model with stochastic demand dependent on price, quality and energy reduction. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2959-2975. doi: 10.3934/jimo.2021098

[15]

Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335

[16]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[17]

Jing Li, Panos Stinis. Model reduction for a power grid model. Journal of Computational Dynamics, 2022, 9 (1) : 1-26. doi: 10.3934/jcd.2021019

[18]

Guirong Pan, Bing Xue, Hongchun Sun. An optimization model and method for supply chain equilibrium management problem. Mathematical Foundations of Computing, 2022, 5 (2) : 145-156. doi: 10.3934/mfc.2022001

[19]

M. Sumon Hossain, M. Monir Uddin. Iterative methods for solving large sparse Lyapunov equations and application to model reduction of index 1 differential-algebraic-equations. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 173-186. doi: 10.3934/naco.2019013

[20]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]