-
Previous Article
Periodic canard trajectories with multiple segments following the unstable part of critical manifold
- DCDS-B Home
- This Issue
-
Next Article
Bifurcation of periodic solutions from a degenerated cycle in equations of neutral type with a small delay
Asymptotic behaviour of random tridiagonal Markov chains in biological applications
1. | Institut für Mathematik, Goethe Universität, D-60054 Frankfurt am Main |
2. | Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoj Karetny lane 19, Moscow 127994 GSP-4 |
References:
[1] |
L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology," CRC Press, Boca Raton, FL, second edn., 2011. |
[2] |
L. Arnold, "Random Synamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[3] |
E. Asarin, P. Diamond, I. Fomenko et al., Chaotic phenomena in desynchronized systems and stability analysis, Comput. Math. Appl., 25 (1993), 81-87, doi:10.1016/0898-1221(93)90214-G, URL http://www.sciencedirect.com/science/article/pii/089812219390214G.
doi: 10.1016/0898-1221(93)90214-G. |
[4] |
J.-P. Aubin and H. Frankowska, "Set-valued Analysis," Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2009, reprint of the 1990 edition [MR1048347]. |
[5] |
M. F. Barnsley, A. Vince and D. C. Wilson, Real projective iterated function systems, ArXiv.org e-Print archive, arXiv:1003.3473. |
[6] |
P. J. Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal., 52 (1973), 330-338. |
[7] |
D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144. |
[8] |
I. Chueshov, "Monotone Random Systems Theory and Applications," 1779 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002. |
[9] |
I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144. doi:10.1080/1468936042000207792, URL http://www.tandfonline.com/doi/abs/10.1080/1468936042000207792.
doi: 10.1080/1468936042000207792. |
[10] |
H. Cohn, Products of stochastic matrices and applications, Internat. J. Math. Math. Sci., 12 (1989), 209-233. doi:10.1155/S0161171289000268, URL http://www.hindawi.com/journals/ijmms/1989/656040/abs/.
doi: 10.1155/S0161171289000268. |
[11] |
D. J. Hartfiel, "Markov Set-Chains," 1695 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998. |
[12] |
D. J. Hartfiel, "Nonhomogeneous Matrix Products," World Scientific Publishing Co. Inc., River Edge, NJ, 2002. |
[13] |
A. E. Hutzenthaler, "Mathematical Models for Cell-Cell Coomunication on Different Time Scales," Ph.D. thesis, Zentrum Mathematik, Technische Universität München, 2009, URL http://deposit.ddb.de/cgi-bin/dokserv?idn=100332925x&dok_var=d1&dok_ext=pdf&filename=100332925x.pdf. |
[14] |
P. Imkeller and P. Kloeden, On the computation of invariant measures in random dynamical systems, Stoch. Dyn., 3 (2003), 247-265. doi:10.1142/S0219493703000711, URL http://www.worldscinet.com/sd/03/0302/S0219493703000711.html.
doi: 10.1142/S0219493703000711. |
[15] |
P. E. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems," 176 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011. |
[16] |
M. A. Krasnosel$'$skij, J. A. Lifshits and A. V. Sobolev, "Positive Linear Systems," 5 of Sigma Series in Applied Mathematics, Heldermann Verlag, Berlin, 1989, The method of positive operators, Translated from the Russian by Jürgen Appell. |
[17] |
A. Leizarowitz, On infinite products of stochastic matrices, Linear Algebra Appl., 168 (1992), 189-219. http://dx.doi.org/10.1016/0024-3795(92)90294-K doi:10.1016/0024-3795(92)90294-K, URL http://www.sciencedirect.com/science/article/pii/002437959290294K.
doi: 10.1016/0024-3795(92)90294-K. |
[18] |
M. Neumann and H. Schneider, The convergence of general products of matrices and the weak ergodicity of Markov chains, Linear Algebra Appl., 287 (1999), 307-314, http://dx.doi.org/10.1016/S0024-3795(98)10196-9 doi:10.1016/S0024-3795(98)10196-9, URL http://www.sciencedirect.com/science/article/pii/S0024379598101969, special issue celebrating the 60th birthday of Ludwig Elsner.
doi: 10.1016/S0024-3795(98)10196-9. |
[19] |
B. Noble and J. W. Daniel, "Applied Linear Algebra," Prentice-Hall Inc., Englewood Cliffs, N. J., second edn., 1977. |
[20] |
B. S. Thomson, J. B. Bruckner and A. M. Bruckner, "Elementary Real Analysis," www.classicalrealanalysis.com, second edn., 2008. |
[21] |
D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling," World Scientific Publishing Co. Pte. Ltd., Singapore, 2005. |
[22] |
J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices, Proc. Amer. Math. Soc., 14 (1963), 733-737. |
show all references
References:
[1] |
L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology," CRC Press, Boca Raton, FL, second edn., 2011. |
[2] |
L. Arnold, "Random Synamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[3] |
E. Asarin, P. Diamond, I. Fomenko et al., Chaotic phenomena in desynchronized systems and stability analysis, Comput. Math. Appl., 25 (1993), 81-87, doi:10.1016/0898-1221(93)90214-G, URL http://www.sciencedirect.com/science/article/pii/089812219390214G.
doi: 10.1016/0898-1221(93)90214-G. |
[4] |
J.-P. Aubin and H. Frankowska, "Set-valued Analysis," Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2009, reprint of the 1990 edition [MR1048347]. |
[5] |
M. F. Barnsley, A. Vince and D. C. Wilson, Real projective iterated function systems, ArXiv.org e-Print archive, arXiv:1003.3473. |
[6] |
P. J. Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Rational Mech. Anal., 52 (1973), 330-338. |
[7] |
D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144. |
[8] |
I. Chueshov, "Monotone Random Systems Theory and Applications," 1779 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002. |
[9] |
I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems, Dyn. Syst., 19 (2004), 127-144. doi:10.1080/1468936042000207792, URL http://www.tandfonline.com/doi/abs/10.1080/1468936042000207792.
doi: 10.1080/1468936042000207792. |
[10] |
H. Cohn, Products of stochastic matrices and applications, Internat. J. Math. Math. Sci., 12 (1989), 209-233. doi:10.1155/S0161171289000268, URL http://www.hindawi.com/journals/ijmms/1989/656040/abs/.
doi: 10.1155/S0161171289000268. |
[11] |
D. J. Hartfiel, "Markov Set-Chains," 1695 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1998. |
[12] |
D. J. Hartfiel, "Nonhomogeneous Matrix Products," World Scientific Publishing Co. Inc., River Edge, NJ, 2002. |
[13] |
A. E. Hutzenthaler, "Mathematical Models for Cell-Cell Coomunication on Different Time Scales," Ph.D. thesis, Zentrum Mathematik, Technische Universität München, 2009, URL http://deposit.ddb.de/cgi-bin/dokserv?idn=100332925x&dok_var=d1&dok_ext=pdf&filename=100332925x.pdf. |
[14] |
P. Imkeller and P. Kloeden, On the computation of invariant measures in random dynamical systems, Stoch. Dyn., 3 (2003), 247-265. doi:10.1142/S0219493703000711, URL http://www.worldscinet.com/sd/03/0302/S0219493703000711.html.
doi: 10.1142/S0219493703000711. |
[15] |
P. E. Kloeden and M. Rasmussen, "Nonautonomous Dynamical Systems," 176 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2011. |
[16] |
M. A. Krasnosel$'$skij, J. A. Lifshits and A. V. Sobolev, "Positive Linear Systems," 5 of Sigma Series in Applied Mathematics, Heldermann Verlag, Berlin, 1989, The method of positive operators, Translated from the Russian by Jürgen Appell. |
[17] |
A. Leizarowitz, On infinite products of stochastic matrices, Linear Algebra Appl., 168 (1992), 189-219. http://dx.doi.org/10.1016/0024-3795(92)90294-K doi:10.1016/0024-3795(92)90294-K, URL http://www.sciencedirect.com/science/article/pii/002437959290294K.
doi: 10.1016/0024-3795(92)90294-K. |
[18] |
M. Neumann and H. Schneider, The convergence of general products of matrices and the weak ergodicity of Markov chains, Linear Algebra Appl., 287 (1999), 307-314, http://dx.doi.org/10.1016/S0024-3795(98)10196-9 doi:10.1016/S0024-3795(98)10196-9, URL http://www.sciencedirect.com/science/article/pii/S0024379598101969, special issue celebrating the 60th birthday of Ludwig Elsner.
doi: 10.1016/S0024-3795(98)10196-9. |
[19] |
B. Noble and J. W. Daniel, "Applied Linear Algebra," Prentice-Hall Inc., Englewood Cliffs, N. J., second edn., 1977. |
[20] |
B. S. Thomson, J. B. Bruckner and A. M. Bruckner, "Elementary Real Analysis," www.classicalrealanalysis.com, second edn., 2008. |
[21] |
D. Wodarz and N. Komarova, "Computational Biology of Cancer: Lecture Notes and Mathematical Modeling," World Scientific Publishing Co. Pte. Ltd., Singapore, 2005. |
[22] |
J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices, Proc. Amer. Math. Soc., 14 (1963), 733-737. |
[1] |
Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228 |
[2] |
Boris Kalinin, Victoria Sadovskaya. Lyapunov exponents of cocycles over non-uniformly hyperbolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5105-5118. doi: 10.3934/dcds.2018224 |
[3] |
Zhiming Li, Lin Shu. The metric entropy of random dynamical systems in a Hilbert space: Characterization of invariant measures satisfying Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4123-4155. doi: 10.3934/dcds.2013.33.4123 |
[4] |
Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619 |
[5] |
Boris Kalinin, Victoria Sadovskaya. Linear cocycles over hyperbolic systems and criteria of conformality. Journal of Modern Dynamics, 2010, 4 (3) : 419-441. doi: 10.3934/jmd.2010.4.419 |
[6] |
Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731 |
[7] |
Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111 |
[8] |
Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261 |
[9] |
Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080 |
[10] |
Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205 |
[11] |
Marie Turčičová, Jan Mandel, Kryštof Eben. Score matching filters for Gaussian Markov random fields with a linear model of the precision matrix. Foundations of Data Science, 2021, 3 (4) : 793-824. doi: 10.3934/fods.2021030 |
[12] |
Michael Scheutzow, Maite Wilke-Berenguer. Random Delta-Hausdorff-attractors. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1199-1217. doi: 10.3934/dcdsb.2018148 |
[13] |
Johnathan M. Bardsley. Gaussian Markov random field priors for inverse problems. Inverse Problems and Imaging, 2013, 7 (2) : 397-416. doi: 10.3934/ipi.2013.7.397 |
[14] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131 |
[15] |
Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050 |
[16] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593 |
[17] |
A. Kononenko. Twisted cocycles and rigidity problems. Electronic Research Announcements, 1995, 1: 26-34. |
[18] |
Jingyu Wang, Yejuan Wang, Lin Yang, Tomás Caraballo. Random attractors for stochastic delay wave equations on $ \mathbb{R}^n $ with linear memory and nonlinear damping. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021141 |
[19] |
Jérôme Coville, Nicolas Dirr, Stephan Luckhaus. Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks and Heterogeneous Media, 2010, 5 (4) : 745-763. doi: 10.3934/nhm.2010.5.745 |
[20] |
Artur Avila. Density of positive Lyapunov exponents for quasiperiodic SL(2, R)-cocycles in arbitrary dimension. Journal of Modern Dynamics, 2009, 3 (4) : 631-636. doi: 10.3934/jmd.2009.3.631 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]