March  2013, 18(2): 467-482. doi: 10.3934/dcdsb.2013.18.467

Periodic canard trajectories with multiple segments following the unstable part of critical manifold

1. 

Institute for Information Transmission Problems, 19 Bolshoi Karetny, Moscow 127994, Russian Federation, National Research University Higher School of Economics, 20 Myasnitskaya Street, Moscow 101000

2. 

Department of Applied Mathematics, University College Cork, Ireland

3. 

Department of Applied Mathematics, University College, Cork

Received  October 2011 Revised  March 2012 Published  November 2012

We consider a scalar fast differential equation which is periodically driven by a slowly varying input. Assuming that the equation depends on $n$ scalar parameters, we present simple sufficient conditions for the existence of a periodic canard solution, which, within a period, makes $n$ fast transitions between the stable branch and the unstable branch of the folded critical curve. The closed trace of the canard solution on the plane of the slow input variable and the fast phase variable has $n$ portions elongated along the unstable branch of the critical curve. We show that the length of these portions and the length of the time intervals of the slow motion separated by the short time intervals of fast transitions between the branches are controlled by the parameters.
Citation: Alexander M. Krasnosel'skii, Edward O'Grady, Alexei Pokrovskii, Dmitrii I. Rachinskii. Periodic canard trajectories with multiple segments following the unstable part of critical manifold. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 467-482. doi: 10.3934/dcdsb.2013.18.467
References:
[1]

B. Appelbe, D. Rachinskii and A. Zhezherun, Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis,, Physica B, 40 (2008), 301.   Google Scholar

[2]

V. I. Arnold, V. S. Afraimovich, Yu. S. Il'yashenko and L. P. Shil'nikov, Theory of Bifurcations,, in, 5 (1994).   Google Scholar

[3]

S. Aubry, Exact models with a complete Devil's staircase,, J. Phys. C: Solid State Phys., 16 (1983), 2497.   Google Scholar

[4]

Z. Balanov, W. Krawcewicz, D. Rachinskii and A. Zhezherun, "Hopf Bifurcation in Symmetric Networks of Coupled Oscillators with Hysteresis,", J. Dyn. Diff. Equat., (2012).  doi: 10.1007/s10884-012-9271-4.  Google Scholar

[5]

E. Benoit, Chasse au canard. II. Tunnels-entonnoirs-peignes,, Collect. Math., 32 (1981), 37.   Google Scholar

[6]

P.-A. Bliman, A. M. Krasnosel'skii and D. I. Rachinskii, Sector estimates of nonlinearities and the existence of self-oscillations in control systems,, Automat. Remote Control, 61 (2000), 889.   Google Scholar

[7]

E. Bouse, A. M. Krasnosel'skii, A. V. Pokrovskii and D. I. Rachinskii, Nonlocal branches of cycles, bistability, and topologically persistent mixed mode oscillations,, Chaos, 18 (2008).   Google Scholar

[8]

M. Brφns, Canard explosion of limit cycles in templator models of self-replication mechanisms,, J. Chem. Phys., 134 (2011).   Google Scholar

[9]

J. L. Callot, F. Diener and M. Diener, Le probleme de la "chasse au canard'',, C. R. Acad. Sci. Paris Ser. A-B, 286 (1978).   Google Scholar

[10]

K. Deimling, "Nonlinear Functional Analysis,'', Springer, (1980).   Google Scholar

[11]

M. Desroches, B. Krauskopf and H. M. Osinga, Numerical continuation of canard orbits in slow-fast dynamical systems,, Nonlinearity, 23 (2010), 739.  doi: 10.1088/0951-7715/23/3/017.  Google Scholar

[12]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,", Redwood City, (1987).   Google Scholar

[13]

P. Diamond, N. A. Kuznetsov and D. I. Rachinskii, On the Hopf bifurcation in control systems with a bounded nonlinearity asymptotically homogeneous at infinity,, J. Differential Equations, 175 (2001), 1.   Google Scholar

[14]

P. Diamond, D. Rachinskii and M. Yumagulov, Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity,, Nonlinear Anal. Theory, 42 (2000), 1017.   Google Scholar

[15]

, "Dynamic Bifurcations,", Lecture Notes in Math. 1493, (1493).   Google Scholar

[16]

V. Gol'dshtein, A. Zinoviev, V. Sobolev and E. Shchepakina, Criterion for thermal explosion with reactant consumption in a dusty gas,, Proc. London Roy. Soc. A, 452 (1996), 2103.  doi: 10.1098/rspa.1996.0111.  Google Scholar

[17]

J. Guckenheimer, K. Hoffman and W. Weckesser, Numerical computation of canards,, Int. J. Bifurcation Chaos Appl. Sci. Eng., 10 (2000), 2669.   Google Scholar

[18]

J. Guckenheimer and M. D. Lamar, Periodic orbit continuation in multiple time scale systems,, in, (2007), 253.   Google Scholar

[19]

A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59.   Google Scholar

[20]

A. M. Krasnosel'skii, N. A. Kuznetsov and D. I. Rachinskii, On resonant differential equations with unbounded non-linearities,, Zeitshrift für Analysis und ihre Anwendungen, 21 (2002), 639.   Google Scholar

[21]

A. M. Krasnosel'skii, N. A. Kuznetsov and D. I. Rachinskii, Resonant equations with unbounded nonlinearities,, Doklady Mathematics, 62 (2000), 44.   Google Scholar

[22]

A. M. Krasnosel'skii, R. Mennicken and D. I. Rachinskii, Small periodic solutions generated by sublinear terms,, J. Differential Equations, 179 (2002), 97.   Google Scholar

[23]

A. M. Krasnosel'skii and D. I. Rachinskii, Continua of cycles of higher-order equations,, Differential Equations, 39 (2003), 1690.   Google Scholar

[24]

A. M. Krasnosel'skii and D. I. Rachinskii, Existence of continua of cycles in hamiltonian control systems,, Aut. Remote Control, 62 (2001), 227.  doi: 10.1023/A:1002842206198.  Google Scholar

[25]

A. M. Krasnosel'skii and D. I. Rachinskii, Continuous branches of cycles in systems with nonlinearizable nonlinearities,, Doklady Mathematics, 67 (2003), 153.   Google Scholar

[26]

A. M. Krasnosel'skii and D. I. Rachinskii, Nonlinear Hopf bifurcations,, Doklady Mathematics, 61 (2000), 389.   Google Scholar

[27]

A. M. Krasnosel'skii and D. I. Rachinskii, On continua of cycles in systems with hysteresis,, Doklady Mathematics, 63 (2001), 339.   Google Scholar

[28]

A. M. Krasnosel'skii and D. I. Rachinskii, On a bifurcation governed by hysteresis nonlinearity,, NoDEA: Nonlinear Differential Equations Appl., 9 (2002), 93.   Google Scholar

[29]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer, (1984).   Google Scholar

[30]

A. Pokrovskii and D. Rachinskii, Effect of positive feedback on Devil's staircase input-output relationship,, DCDS-S, ().   Google Scholar

[31]

A. Pokrovskii, D. Rachinskii, V. Sobolev and A. Zhezherun, Topological degree in analysis of canard-type trajectories in 3-D systems,, Applicable Analysis: Int. J., 90 (2011), 1123.   Google Scholar

[32]

A. Pokrovskii, E. Shchepakina and V. Sobolev, Canard doublet in Lotka-Volterra type model,, J. Phys. Conf. Ser., 138 (2008).   Google Scholar

[33]

A. Pokrovskii and A. Zhezherun, Topological method for analysis of periodic canards,, Automat. Remote Control, 70 (2009), 967.   Google Scholar

[34]

A. Pokrovskii and A. Zhezherun, Topological degree in analysis of chaotic behavior in singularly perturbed systems,, Chaos, 18 (2008).   Google Scholar

[35]

M. Sekikawa, N. Inaba and T. Tsubouchi, Chaos via duck solution breakdown in a piecewise linear van der Pol oscillator driven by an extremely small periodic perturbation,, Physica D, 194 (2004), 227.   Google Scholar

[36]

, "Singular Perturbations and Hysteresis,", (eds. M. P. Mortell, (2005).   Google Scholar

[37]

V. A. Sobolev, Geometry of singular perturbations: Critical cases,, in, (2005), 153.   Google Scholar

show all references

References:
[1]

B. Appelbe, D. Rachinskii and A. Zhezherun, Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis,, Physica B, 40 (2008), 301.   Google Scholar

[2]

V. I. Arnold, V. S. Afraimovich, Yu. S. Il'yashenko and L. P. Shil'nikov, Theory of Bifurcations,, in, 5 (1994).   Google Scholar

[3]

S. Aubry, Exact models with a complete Devil's staircase,, J. Phys. C: Solid State Phys., 16 (1983), 2497.   Google Scholar

[4]

Z. Balanov, W. Krawcewicz, D. Rachinskii and A. Zhezherun, "Hopf Bifurcation in Symmetric Networks of Coupled Oscillators with Hysteresis,", J. Dyn. Diff. Equat., (2012).  doi: 10.1007/s10884-012-9271-4.  Google Scholar

[5]

E. Benoit, Chasse au canard. II. Tunnels-entonnoirs-peignes,, Collect. Math., 32 (1981), 37.   Google Scholar

[6]

P.-A. Bliman, A. M. Krasnosel'skii and D. I. Rachinskii, Sector estimates of nonlinearities and the existence of self-oscillations in control systems,, Automat. Remote Control, 61 (2000), 889.   Google Scholar

[7]

E. Bouse, A. M. Krasnosel'skii, A. V. Pokrovskii and D. I. Rachinskii, Nonlocal branches of cycles, bistability, and topologically persistent mixed mode oscillations,, Chaos, 18 (2008).   Google Scholar

[8]

M. Brφns, Canard explosion of limit cycles in templator models of self-replication mechanisms,, J. Chem. Phys., 134 (2011).   Google Scholar

[9]

J. L. Callot, F. Diener and M. Diener, Le probleme de la "chasse au canard'',, C. R. Acad. Sci. Paris Ser. A-B, 286 (1978).   Google Scholar

[10]

K. Deimling, "Nonlinear Functional Analysis,'', Springer, (1980).   Google Scholar

[11]

M. Desroches, B. Krauskopf and H. M. Osinga, Numerical continuation of canard orbits in slow-fast dynamical systems,, Nonlinearity, 23 (2010), 739.  doi: 10.1088/0951-7715/23/3/017.  Google Scholar

[12]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems,", Redwood City, (1987).   Google Scholar

[13]

P. Diamond, N. A. Kuznetsov and D. I. Rachinskii, On the Hopf bifurcation in control systems with a bounded nonlinearity asymptotically homogeneous at infinity,, J. Differential Equations, 175 (2001), 1.   Google Scholar

[14]

P. Diamond, D. Rachinskii and M. Yumagulov, Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity,, Nonlinear Anal. Theory, 42 (2000), 1017.   Google Scholar

[15]

, "Dynamic Bifurcations,", Lecture Notes in Math. 1493, (1493).   Google Scholar

[16]

V. Gol'dshtein, A. Zinoviev, V. Sobolev and E. Shchepakina, Criterion for thermal explosion with reactant consumption in a dusty gas,, Proc. London Roy. Soc. A, 452 (1996), 2103.  doi: 10.1098/rspa.1996.0111.  Google Scholar

[17]

J. Guckenheimer, K. Hoffman and W. Weckesser, Numerical computation of canards,, Int. J. Bifurcation Chaos Appl. Sci. Eng., 10 (2000), 2669.   Google Scholar

[18]

J. Guckenheimer and M. D. Lamar, Periodic orbit continuation in multiple time scale systems,, in, (2007), 253.   Google Scholar

[19]

A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59.   Google Scholar

[20]

A. M. Krasnosel'skii, N. A. Kuznetsov and D. I. Rachinskii, On resonant differential equations with unbounded non-linearities,, Zeitshrift für Analysis und ihre Anwendungen, 21 (2002), 639.   Google Scholar

[21]

A. M. Krasnosel'skii, N. A. Kuznetsov and D. I. Rachinskii, Resonant equations with unbounded nonlinearities,, Doklady Mathematics, 62 (2000), 44.   Google Scholar

[22]

A. M. Krasnosel'skii, R. Mennicken and D. I. Rachinskii, Small periodic solutions generated by sublinear terms,, J. Differential Equations, 179 (2002), 97.   Google Scholar

[23]

A. M. Krasnosel'skii and D. I. Rachinskii, Continua of cycles of higher-order equations,, Differential Equations, 39 (2003), 1690.   Google Scholar

[24]

A. M. Krasnosel'skii and D. I. Rachinskii, Existence of continua of cycles in hamiltonian control systems,, Aut. Remote Control, 62 (2001), 227.  doi: 10.1023/A:1002842206198.  Google Scholar

[25]

A. M. Krasnosel'skii and D. I. Rachinskii, Continuous branches of cycles in systems with nonlinearizable nonlinearities,, Doklady Mathematics, 67 (2003), 153.   Google Scholar

[26]

A. M. Krasnosel'skii and D. I. Rachinskii, Nonlinear Hopf bifurcations,, Doklady Mathematics, 61 (2000), 389.   Google Scholar

[27]

A. M. Krasnosel'skii and D. I. Rachinskii, On continua of cycles in systems with hysteresis,, Doklady Mathematics, 63 (2001), 339.   Google Scholar

[28]

A. M. Krasnosel'skii and D. I. Rachinskii, On a bifurcation governed by hysteresis nonlinearity,, NoDEA: Nonlinear Differential Equations Appl., 9 (2002), 93.   Google Scholar

[29]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer, (1984).   Google Scholar

[30]

A. Pokrovskii and D. Rachinskii, Effect of positive feedback on Devil's staircase input-output relationship,, DCDS-S, ().   Google Scholar

[31]

A. Pokrovskii, D. Rachinskii, V. Sobolev and A. Zhezherun, Topological degree in analysis of canard-type trajectories in 3-D systems,, Applicable Analysis: Int. J., 90 (2011), 1123.   Google Scholar

[32]

A. Pokrovskii, E. Shchepakina and V. Sobolev, Canard doublet in Lotka-Volterra type model,, J. Phys. Conf. Ser., 138 (2008).   Google Scholar

[33]

A. Pokrovskii and A. Zhezherun, Topological method for analysis of periodic canards,, Automat. Remote Control, 70 (2009), 967.   Google Scholar

[34]

A. Pokrovskii and A. Zhezherun, Topological degree in analysis of chaotic behavior in singularly perturbed systems,, Chaos, 18 (2008).   Google Scholar

[35]

M. Sekikawa, N. Inaba and T. Tsubouchi, Chaos via duck solution breakdown in a piecewise linear van der Pol oscillator driven by an extremely small periodic perturbation,, Physica D, 194 (2004), 227.   Google Scholar

[36]

, "Singular Perturbations and Hysteresis,", (eds. M. P. Mortell, (2005).   Google Scholar

[37]

V. A. Sobolev, Geometry of singular perturbations: Critical cases,, in, (2005), 153.   Google Scholar

[1]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[2]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -- efficient solution strategies based on homogenization theory. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 183-219. doi: 10.3934/naco.2016008

[3]

Vladimir Sobolev. Canard cascades. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 513-521. doi: 10.3934/dcdsb.2013.18.513

[4]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

[5]

Yaping Wu, Xiuxia Xing, Qixiao Ye. Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 47-66. doi: 10.3934/dcds.2006.16.47

[6]

Yaping Wu, Xiuxia Xing. Stability of traveling waves with critical speeds for $P$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1123-1139. doi: 10.3934/dcds.2008.20.1123

[7]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

[8]

Thi-Bich-Ngoc Mac. Existence of solution for a system of repulsion and alignment: Comparison between theory and simulation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3013-3027. doi: 10.3934/dcdsb.2015.20.3013

[9]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[10]

Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003

[11]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[12]

Freddy Dumortier, Robert Roussarie. Birth of canard cycles. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 723-781. doi: 10.3934/dcdss.2009.2.723

[13]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[14]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[15]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[16]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[17]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[18]

Gui-Dong Li, Yong-Yong Li, Xiao-Qi Liu, Chun-Lei Tang. A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1351-1365. doi: 10.3934/cpaa.2020066

[19]

Elena Shchepakina, Olga Korotkova. Canard explosion in chemical and optical systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 495-512. doi: 10.3934/dcdsb.2013.18.495

[20]

Freddy Dumortier, Robert Roussarie. Canard cycles with two breaking parameters. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 787-806. doi: 10.3934/dcds.2007.17.787

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (3)

[Back to Top]