May  2013, 18(3): 643-666. doi: 10.3934/dcdsb.2013.18.643

Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing

1. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, United States

Received  May 2012 Revised  September 2012 Published  December 2012

This paper is concerned with the asymptotic behavior of solutions of the FitzHugh-Nagumo system on $\mathbb{R}^n$ driven by additive noise and deterministic non-autonomous forcing. We prove the system has a random attractor which pullback attracts all tempered random sets. We also prove the periodicity of the random attractor when the system is perturbed by time periodic forcing. The pullback asymptotic compactness of solutions is established by uniform estimates on the tails of solutions outside a large ball in $\mathbb{R}^n$.
Citation: Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643
References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Translated and revised from the 1989 Russian original by Babin, 25 (1989).   Google Scholar

[3]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,, J. Nonl. Sci., 7 (1997), 475.  doi: 10.1007/s003329900037.  Google Scholar

[4]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stoch. Dyn., 6 (2006), 1.  doi: 10.1142/S0219493706001621.  Google Scholar

[5]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[6]

J. Bell, Some threshold results for models of myelinated nerves,, Mathematical Biosciences, 54 (1981), 181.  doi: 10.1016/0025-5564(81)90085-7.  Google Scholar

[7]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems,, Dynamics of Continuous, 10 (2003), 491.   Google Scholar

[8]

T. Caraballo, J. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory,, Discrete Continuous Dynamical Systems B, 9 (2008), 525.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[9]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Contin. Dyn. Syst., 21 (2008), 415.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[10]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[11]

T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,, Nonlinear Analysis, 74 (2011), 3671.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[12]

I. Chueshow, "Monotone Random Systems - Theory and Applications,", Lecture Notes in Mathematics, 1779 (2002).  doi: 10.1007/b83277.  Google Scholar

[13]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems,, Dynamical Systems, 19 (2004), 127.  doi: 10.1080/1468936042000207792.  Google Scholar

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[15]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Diff. Eqns., 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[16]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,, Ann. Probab., 31 (2003), 2109.  doi: 10.1214/aop/1068646380.  Google Scholar

[17]

J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations,, J. Dynam. Differential Equations, 16 (2004), 949.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[18]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, Comm. Math. Sci., 1 (2003), 133.   Google Scholar

[19]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.   Google Scholar

[20]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise,, Stoch. Stoch. Rep., 59 (1996), 21.   Google Scholar

[21]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion,, J. Dynam. Differential Equations, 23 (2011), 671.  doi: 10.1007/s10884-011-9222-5.  Google Scholar

[22]

M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369.  doi: 10.1142/S0219493711003358.  Google Scholar

[23]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[24]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains,, Discrete and Continuous Dynamical Systems, 24 (2009), 855.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[25]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors,, Proc. Royal Soc. London Serie A Math. Phys. Eng. Sci., 463 (2007), 163.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[26]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for infinite-dimensional random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010).  doi: 10.1090/S0065-9266-10-00574-0.  Google Scholar

[27]

Y. Lu and Z. Shao, Determining nodes for partly dissipative reaction diffusion systems,, Nonlinear Analysis, 54 (2003), 873.  doi: 10.1016/S0362-546X(03)00112-3.  Google Scholar

[28]

M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems,, SIAM J. Math. Anal., 20 (1989), 816.  doi: 10.1137/0520057.  Google Scholar

[29]

M. Marion, Inertial manifolds associated to partly dissipative reaction-diffusion systems,, J. Math. Anal. Appl., 143 (1989), 295.  doi: 10.1016/0022-247X(89)90043-7.  Google Scholar

[30]

S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations,, Mem. Amer. Math. Soc., 196 (2008).   Google Scholar

[31]

J. Nagumo, S. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon,, Proc. J. R. E., 50 (1964), 2061.   Google Scholar

[32]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992), 185.   Google Scholar

[33]

R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).   Google Scholar

[34]

Z. Shao, Existence of inertial manifolds for partly dissipative reaction diffusion systems in higher space dimensions,, J. Differential Equations, 144 (1998), 1.  doi: 10.1006/jdeq.1997.3383.  Google Scholar

[35]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Second edition, 68 (1997).   Google Scholar

[36]

B. Wang, Attractors for reaction diffusion equations in unbounded domains,, Physica D, 128 (1999), 41.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[37]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbbR^3$,, Transactions of American Mathematical Society, 363 (2011), 3639.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[38]

B. Wang, Random attractors for the Stochastic Benjamin-Bona-Mahony Equation on unbounded domains,, J. Differential Equations, 246 (2009), 2506.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[39]

B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains,, Nonlinear Analysis, 71 (2009), 2811.  doi: 10.1016/j.na.2009.01.131.  Google Scholar

[40]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[41]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems,, Electronic Journal of Differential Equations, 2009 (2009).   Google Scholar

[42]

B. Wang, Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains,, Electronic Journal of Differential Equations, 2012 (2012).   Google Scholar

[43]

B. Wang, Existence, stability and bifurcation of random periodic solutions of stochastic parabolic equations,, submitted for publication., ().   Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Translated and revised from the 1989 Russian original by Babin, 25 (1989).   Google Scholar

[3]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,, J. Nonl. Sci., 7 (1997), 475.  doi: 10.1007/s003329900037.  Google Scholar

[4]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stoch. Dyn., 6 (2006), 1.  doi: 10.1142/S0219493706001621.  Google Scholar

[5]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[6]

J. Bell, Some threshold results for models of myelinated nerves,, Mathematical Biosciences, 54 (1981), 181.  doi: 10.1016/0025-5564(81)90085-7.  Google Scholar

[7]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems,, Dynamics of Continuous, 10 (2003), 491.   Google Scholar

[8]

T. Caraballo, J. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory,, Discrete Continuous Dynamical Systems B, 9 (2008), 525.  doi: 10.3934/dcdsb.2008.9.525.  Google Scholar

[9]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Contin. Dyn. Syst., 21 (2008), 415.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[10]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[11]

T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,, Nonlinear Analysis, 74 (2011), 3671.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[12]

I. Chueshow, "Monotone Random Systems - Theory and Applications,", Lecture Notes in Mathematics, 1779 (2002).  doi: 10.1007/b83277.  Google Scholar

[13]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems,, Dynamical Systems, 19 (2004), 127.  doi: 10.1080/1468936042000207792.  Google Scholar

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[15]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Diff. Eqns., 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[16]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,, Ann. Probab., 31 (2003), 2109.  doi: 10.1214/aop/1068646380.  Google Scholar

[17]

J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations,, J. Dynam. Differential Equations, 16 (2004), 949.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[18]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, Comm. Math. Sci., 1 (2003), 133.   Google Scholar

[19]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.   Google Scholar

[20]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise,, Stoch. Stoch. Rep., 59 (1996), 21.   Google Scholar

[21]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion,, J. Dynam. Differential Equations, 23 (2011), 671.  doi: 10.1007/s10884-011-9222-5.  Google Scholar

[22]

M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369.  doi: 10.1142/S0219493711003358.  Google Scholar

[23]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[24]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains,, Discrete and Continuous Dynamical Systems, 24 (2009), 855.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[25]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors,, Proc. Royal Soc. London Serie A Math. Phys. Eng. Sci., 463 (2007), 163.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[26]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for infinite-dimensional random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010).  doi: 10.1090/S0065-9266-10-00574-0.  Google Scholar

[27]

Y. Lu and Z. Shao, Determining nodes for partly dissipative reaction diffusion systems,, Nonlinear Analysis, 54 (2003), 873.  doi: 10.1016/S0362-546X(03)00112-3.  Google Scholar

[28]

M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems,, SIAM J. Math. Anal., 20 (1989), 816.  doi: 10.1137/0520057.  Google Scholar

[29]

M. Marion, Inertial manifolds associated to partly dissipative reaction-diffusion systems,, J. Math. Anal. Appl., 143 (1989), 295.  doi: 10.1016/0022-247X(89)90043-7.  Google Scholar

[30]

S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations,, Mem. Amer. Math. Soc., 196 (2008).   Google Scholar

[31]

J. Nagumo, S. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon,, Proc. J. R. E., 50 (1964), 2061.   Google Scholar

[32]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992), 185.   Google Scholar

[33]

R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).   Google Scholar

[34]

Z. Shao, Existence of inertial manifolds for partly dissipative reaction diffusion systems in higher space dimensions,, J. Differential Equations, 144 (1998), 1.  doi: 10.1006/jdeq.1997.3383.  Google Scholar

[35]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Second edition, 68 (1997).   Google Scholar

[36]

B. Wang, Attractors for reaction diffusion equations in unbounded domains,, Physica D, 128 (1999), 41.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[37]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbbR^3$,, Transactions of American Mathematical Society, 363 (2011), 3639.  doi: 10.1090/S0002-9947-2011-05247-5.  Google Scholar

[38]

B. Wang, Random attractors for the Stochastic Benjamin-Bona-Mahony Equation on unbounded domains,, J. Differential Equations, 246 (2009), 2506.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[39]

B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains,, Nonlinear Analysis, 71 (2009), 2811.  doi: 10.1016/j.na.2009.01.131.  Google Scholar

[40]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[41]

B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems,, Electronic Journal of Differential Equations, 2009 (2009).   Google Scholar

[42]

B. Wang, Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains,, Electronic Journal of Differential Equations, 2012 (2012).   Google Scholar

[43]

B. Wang, Existence, stability and bifurcation of random periodic solutions of stochastic parabolic equations,, submitted for publication., ().   Google Scholar

[1]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[2]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[3]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[4]

Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106

[5]

Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3935-3947. doi: 10.3934/dcdsb.2018118

[6]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[7]

Yangrong Li, Jinyan Yin. A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1203-1223. doi: 10.3934/dcdsb.2016.21.1203

[8]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[9]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[10]

Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216

[11]

Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203

[12]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[13]

Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639

[14]

Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3453-3474. doi: 10.3934/dcdsb.2018251

[15]

Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651

[16]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[17]

Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations & Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028

[18]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[19]

Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations & Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027

[20]

Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]