-
Previous Article
The spectral collocation method for stochastic differential equations
- DCDS-B Home
- This Issue
-
Next Article
Mathematics of traveling waves in chemotaxis --Review paper--
Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing
1. | Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, United States |
References:
[1] |
L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).
|
[2] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Translated and revised from the 1989 Russian original by Babin, 25 (1989).
|
[3] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,, J. Nonl. Sci., 7 (1997), 475.
doi: 10.1007/s003329900037. |
[4] |
P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stoch. Dyn., 6 (2006), 1.
doi: 10.1142/S0219493706001621. |
[5] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845.
doi: 10.1016/j.jde.2008.05.017. |
[6] |
J. Bell, Some threshold results for models of myelinated nerves,, Mathematical Biosciences, 54 (1981), 181.
doi: 10.1016/0025-5564(81)90085-7. |
[7] |
T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems,, Dynamics of Continuous, 10 (2003), 491.
|
[8] |
T. Caraballo, J. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory,, Discrete Continuous Dynamical Systems B, 9 (2008), 525.
doi: 10.3934/dcdsb.2008.9.525. |
[9] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Contin. Dyn. Syst., 21 (2008), 415.
doi: 10.3934/dcds.2008.21.415. |
[10] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439.
doi: 10.3934/dcdsb.2010.14.439. |
[11] |
T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,, Nonlinear Analysis, 74 (2011), 3671.
doi: 10.1016/j.na.2011.02.047. |
[12] |
I. Chueshow, "Monotone Random Systems - Theory and Applications,", Lecture Notes in Mathematics, 1779 (2002).
doi: 10.1007/b83277. |
[13] |
I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems,, Dynamical Systems, 19 (2004), 127.
doi: 10.1080/1468936042000207792. |
[14] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365.
doi: 10.1007/BF01193705. |
[15] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Diff. Eqns., 9 (1997), 307.
doi: 10.1007/BF02219225. |
[16] |
J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,, Ann. Probab., 31 (2003), 2109.
doi: 10.1214/aop/1068646380. |
[17] |
J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations,, J. Dynam. Differential Equations, 16 (2004), 949.
doi: 10.1007/s10884-004-7830-z. |
[18] |
J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, Comm. Math. Sci., 1 (2003), 133.
|
[19] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445. Google Scholar |
[20] |
F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise,, Stoch. Stoch. Rep., 59 (1996), 21.
|
[21] |
M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion,, J. Dynam. Differential Equations, 23 (2011), 671.
doi: 10.1007/s10884-011-9222-5. |
[22] |
M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369.
doi: 10.1142/S0219493711003358. |
[23] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).
|
[24] |
J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains,, Discrete and Continuous Dynamical Systems, 24 (2009), 855.
doi: 10.3934/dcds.2009.24.855. |
[25] |
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors,, Proc. Royal Soc. London Serie A Math. Phys. Eng. Sci., 463 (2007), 163.
doi: 10.1098/rspa.2006.1753. |
[26] |
Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for infinite-dimensional random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010).
doi: 10.1090/S0065-9266-10-00574-0. |
[27] |
Y. Lu and Z. Shao, Determining nodes for partly dissipative reaction diffusion systems,, Nonlinear Analysis, 54 (2003), 873.
doi: 10.1016/S0362-546X(03)00112-3. |
[28] |
M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems,, SIAM J. Math. Anal., 20 (1989), 816.
doi: 10.1137/0520057. |
[29] |
M. Marion, Inertial manifolds associated to partly dissipative reaction-diffusion systems,, J. Math. Anal. Appl., 143 (1989), 295.
doi: 10.1016/0022-247X(89)90043-7. |
[30] |
S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations,, Mem. Amer. Math. Soc., 196 (2008).
|
[31] |
J. Nagumo, S. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon,, Proc. J. R. E., 50 (1964), 2061. Google Scholar |
[32] |
B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992), 185. Google Scholar |
[33] |
R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).
|
[34] |
Z. Shao, Existence of inertial manifolds for partly dissipative reaction diffusion systems in higher space dimensions,, J. Differential Equations, 144 (1998), 1.
doi: 10.1006/jdeq.1997.3383. |
[35] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Second edition, 68 (1997).
|
[36] |
B. Wang, Attractors for reaction diffusion equations in unbounded domains,, Physica D, 128 (1999), 41.
doi: 10.1016/S0167-2789(98)00304-2. |
[37] |
B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbbR^3$,, Transactions of American Mathematical Society, 363 (2011), 3639.
doi: 10.1090/S0002-9947-2011-05247-5. |
[38] |
B. Wang, Random attractors for the Stochastic Benjamin-Bona-Mahony Equation on unbounded domains,, J. Differential Equations, 246 (2009), 2506.
doi: 10.1016/j.jde.2008.10.012. |
[39] |
B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains,, Nonlinear Analysis, 71 (2009), 2811.
doi: 10.1016/j.na.2009.01.131. |
[40] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.
doi: 10.1016/j.jde.2012.05.015. |
[41] |
B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems,, Electronic Journal of Differential Equations, 2009 (2009).
|
[42] |
B. Wang, Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains,, Electronic Journal of Differential Equations, 2012 (2012).
|
[43] |
B. Wang, Existence, stability and bifurcation of random periodic solutions of stochastic parabolic equations,, submitted for publication., (). Google Scholar |
show all references
References:
[1] |
L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).
|
[2] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Translated and revised from the 1989 Russian original by Babin, 25 (1989).
|
[3] |
J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,, J. Nonl. Sci., 7 (1997), 475.
doi: 10.1007/s003329900037. |
[4] |
P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stoch. Dyn., 6 (2006), 1.
doi: 10.1142/S0219493706001621. |
[5] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845.
doi: 10.1016/j.jde.2008.05.017. |
[6] |
J. Bell, Some threshold results for models of myelinated nerves,, Mathematical Biosciences, 54 (1981), 181.
doi: 10.1016/0025-5564(81)90085-7. |
[7] |
T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems,, Dynamics of Continuous, 10 (2003), 491.
|
[8] |
T. Caraballo, J. Real and I. D. Chueshov, Pullback attractors for stochastic heat equations in materials with memory,, Discrete Continuous Dynamical Systems B, 9 (2008), 525.
doi: 10.3934/dcdsb.2008.9.525. |
[9] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Contin. Dyn. Syst., 21 (2008), 415.
doi: 10.3934/dcds.2008.21.415. |
[10] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439.
doi: 10.3934/dcdsb.2010.14.439. |
[11] |
T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,, Nonlinear Analysis, 74 (2011), 3671.
doi: 10.1016/j.na.2011.02.047. |
[12] |
I. Chueshow, "Monotone Random Systems - Theory and Applications,", Lecture Notes in Mathematics, 1779 (2002).
doi: 10.1007/b83277. |
[13] |
I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems,, Dynamical Systems, 19 (2004), 127.
doi: 10.1080/1468936042000207792. |
[14] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365.
doi: 10.1007/BF01193705. |
[15] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Diff. Eqns., 9 (1997), 307.
doi: 10.1007/BF02219225. |
[16] |
J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations,, Ann. Probab., 31 (2003), 2109.
doi: 10.1214/aop/1068646380. |
[17] |
J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations,, J. Dynam. Differential Equations, 16 (2004), 949.
doi: 10.1007/s10884-004-7830-z. |
[18] |
J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, Comm. Math. Sci., 1 (2003), 133.
|
[19] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445. Google Scholar |
[20] |
F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise,, Stoch. Stoch. Rep., 59 (1996), 21.
|
[21] |
M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion,, J. Dynam. Differential Equations, 23 (2011), 671.
doi: 10.1007/s10884-011-9222-5. |
[22] |
M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369.
doi: 10.1142/S0219493711003358. |
[23] |
J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).
|
[24] |
J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains,, Discrete and Continuous Dynamical Systems, 24 (2009), 855.
doi: 10.3934/dcds.2009.24.855. |
[25] |
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors,, Proc. Royal Soc. London Serie A Math. Phys. Eng. Sci., 463 (2007), 163.
doi: 10.1098/rspa.2006.1753. |
[26] |
Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for infinite-dimensional random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010).
doi: 10.1090/S0065-9266-10-00574-0. |
[27] |
Y. Lu and Z. Shao, Determining nodes for partly dissipative reaction diffusion systems,, Nonlinear Analysis, 54 (2003), 873.
doi: 10.1016/S0362-546X(03)00112-3. |
[28] |
M. Marion, Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems,, SIAM J. Math. Anal., 20 (1989), 816.
doi: 10.1137/0520057. |
[29] |
M. Marion, Inertial manifolds associated to partly dissipative reaction-diffusion systems,, J. Math. Anal. Appl., 143 (1989), 295.
doi: 10.1016/0022-247X(89)90043-7. |
[30] |
S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations,, Mem. Amer. Math. Soc., 196 (2008).
|
[31] |
J. Nagumo, S. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon,, Proc. J. R. E., 50 (1964), 2061. Google Scholar |
[32] |
B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992), 185. Google Scholar |
[33] |
R. Sell and Y. You, "Dynamics of Evolutionary Equations,", Applied Mathematical Sciences, 143 (2002).
|
[34] |
Z. Shao, Existence of inertial manifolds for partly dissipative reaction diffusion systems in higher space dimensions,, J. Differential Equations, 144 (1998), 1.
doi: 10.1006/jdeq.1997.3383. |
[35] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Second edition, 68 (1997).
|
[36] |
B. Wang, Attractors for reaction diffusion equations in unbounded domains,, Physica D, 128 (1999), 41.
doi: 10.1016/S0167-2789(98)00304-2. |
[37] |
B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbbR^3$,, Transactions of American Mathematical Society, 363 (2011), 3639.
doi: 10.1090/S0002-9947-2011-05247-5. |
[38] |
B. Wang, Random attractors for the Stochastic Benjamin-Bona-Mahony Equation on unbounded domains,, J. Differential Equations, 246 (2009), 2506.
doi: 10.1016/j.jde.2008.10.012. |
[39] |
B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains,, Nonlinear Analysis, 71 (2009), 2811.
doi: 10.1016/j.na.2009.01.131. |
[40] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.
doi: 10.1016/j.jde.2012.05.015. |
[41] |
B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems,, Electronic Journal of Differential Equations, 2009 (2009).
|
[42] |
B. Wang, Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains,, Electronic Journal of Differential Equations, 2012 (2012).
|
[43] |
B. Wang, Existence, stability and bifurcation of random periodic solutions of stochastic parabolic equations,, submitted for publication., (). Google Scholar |
[1] |
Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441 |
[2] |
Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150 |
[3] |
B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077 |
[4] |
Takashi Kajiwara. A Heteroclinic Solution to a Variational Problem Corresponding to FitzHugh-Nagumo type Reaction-Diffusion System with Heterogeneity. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2133-2156. doi: 10.3934/cpaa.2017106 |
[5] |
Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3935-3947. doi: 10.3934/dcdsb.2018118 |
[6] |
Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072 |
[7] |
Yangrong Li, Jinyan Yin. A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1203-1223. doi: 10.3934/dcdsb.2016.21.1203 |
[8] |
S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593 |
[9] |
Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1 |
[10] |
Arnold Dikansky. Fitzhugh-Nagumo equations in a nonhomogeneous medium. Conference Publications, 2005, 2005 (Special) : 216-224. doi: 10.3934/proc.2005.2005.216 |
[11] |
Anna Cattani. FitzHugh-Nagumo equations with generalized diffusive coupling. Mathematical Biosciences & Engineering, 2014, 11 (2) : 203-215. doi: 10.3934/mbe.2014.11.203 |
[12] |
Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101 |
[13] |
Matthieu Alfaro, Hiroshi Matano. On the validity of formal asymptotic expansions in Allen-Cahn equation and FitzHugh-Nagumo system with generic initial data. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1639-1649. doi: 10.3934/dcdsb.2012.17.1639 |
[14] |
Wenqiang Zhao. Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3453-3474. doi: 10.3934/dcdsb.2018251 |
[15] |
Brahim Alouini, Olivier Goubet. Regularity of the attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 651-677. doi: 10.3934/dcdsb.2014.19.651 |
[16] |
Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757 |
[17] |
Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations & Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028 |
[18] |
John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851 |
[19] |
Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations & Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027 |
[20] |
Brahim Alouini. Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1781-1801. doi: 10.3934/cpaa.2015.14.1781 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]