Citation: |
[1] |
E. J. Allen, S. J. Novosel and Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations, Stochastics Rep., 64 (1998), 117-142. |
[2] |
I. Babuska and K.-M. Liu, On solving stochastic initial-value differential equations, Math. Models. Meth. Appl. Sci., 13 (2003), 715-745.doi: 10.1142/S0218202503002696. |
[3] |
N. Bruti-Liberati and E. Platen, "On the Strong Approximation of Jump-Diffusion Process," Technical Report, Quantitative Finance Research Paper, 157, University of Technology, Sydney, 2005. |
[4] |
N. Bruti-Liberati and E. Platen, Strong approximations of stochastic differential equations with jumps, J. Comp. Appl. Math., 205 (2007), 982-1001.doi: 10.1016/j.cam.2006.03.040. |
[5] |
K. Burrage and P. M. Burrage, High strong order explicit Runge-Kutta methods for stochastic differenital equations, Appl. Numer. Math., 22 (1996), 81-101.doi: 10.1016/S0168-9274(96)00027-X. |
[6] |
K. Burrage and P. M. Burrage, Order conditions of stochastic Runge-Kutta methods by B-series, SIAM J. Numer. Anal., 38 (2000), 1626-1646.doi: 10.1137/S0036142999363206. |
[7] |
K. Burrage, P. M. Burrage and T. Tian, Numerical methods for strong solutions of stochastidc differential equations: An overview, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 460 (2004), 373-402.doi: 10.1098/rspa.2003.1247. |
[8] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. Zang, "Spectral Mehtods in Fluid Dynamics," Springer Series in Computational Physics, Springer-Verlag, New York, 1988. |
[9] |
C. C. Chang, Numerical solution of stochastic differential equations with constant diffusion coefficients, Math. Comp., 49 (1987), 523-542.doi: 10.2307/2008326. |
[10] |
J. M. C. Clark and R. J. Cameron, The maximum rate of convergence of discrete approximations for stochastic differential equations, in "Stochastic Differential Systems" (Proc. IFIP-WG 7/1 Working Conf. Vilnius, 1978), Lecture Notes in Control and Inform. Sc., 25, Springer, Berlin-New York, (1980), 162-171. |
[11] |
A. Gardoń, The order of approximations for solutions of Itó-type stochastic differential equations with jumps, Stoch. Anal Appl., 22 (2004), 679-699.doi: 10.1081/SAP-120030451. |
[12] |
A. Gardoń, The order 1.5 approximation for solution of jump-diffusion equations, Stoch. Anal. Appl., 24 (2006), 1147-1168.doi: 10.1080/07362990600958838. |
[13] |
R. G. Ghanem and P. D. Spanos, "Stochastic Finite Elements: A Spectral Approach," Springer-Verlag, New York, 1991.doi: 10.1007/978-1-4612-3094-6. |
[14] |
D. Gottlieb and S. A. Orszag, "Numerical Analysis of Spectral Methods: Theory and Applications," CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26, Society for Industrial and Applied Mathematics, Philadelphia, 1977. |
[15] |
D. Higham, An algorithm introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.doi: 10.1137/S0036144500378302. |
[16] |
M. Kessler, Simple and explicit estimating functions for a discretely observed diffusion process, Scan. J. Stat., 27 (2000), 65-82.doi: 10.1111/1467-9469.00179. |
[17] |
M. Kleiber and T. D. Hien, "The Stochastic Finite Element Method," John Wiley & Sons, Ltd., Chichester, 1992. |
[18] |
P. E. Kloeden, S. Cyganowski and J. Ombach, "From Elementary Probability to Stochastic Differential Equations with MAPLE®," Universitext, Springer-Verlag, Berlin, 2002.doi: 10.1007/978-3-642-56144-3. |
[19] |
P. E. Kloeden and S. E. Platen, "Numerical Solutions of Stochastic Differential Equations," Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992. |
[20] |
P. E. Kloeden, E. Platen and H. Schurz, "Numerical Solution of SDE Through Computer Experiments," With 1 IBM-PC floppy disk (3.5 inch; HD), Universitext, Springer-Verlag, Berlin, 1994.doi: 10.1007/978-3-642-57913-4. |
[21] |
I. V. Krasovsky, Asymptotic distribution of zeros of polynomials satisfying difference equations, J. Comp. Appl. Math., 150 (2003), 56-70.doi: 10.1016/S0377-0427(02)00564-2. |
[22] |
S. M. Lacus, "Simulation and Inference for Stochastic Differential Equations," Springer, 2007. |
[23] |
E. Platen and N. Bruti-Liberati, Numerical Solution of Stochastic Differential Equations with Jumps in Finance, Stochastic Modelling and Applied Probability, 64, Springer-Verlag, Berlin, 2010.doi: 10.1007/978-3-642-13694-8. |
[24] |
I. Shoji and T. Ozaki, Estimation for nonlinear stochastic differential equations by a local linearization method, Stoch. Anal. Appl., 16 (1998), 733-752.doi: 10.1080/07362999808809559. |
[25] |
L. N. Trefethen, "Spectral Methods in MATLAB," Software, Environments, and Tools, 10, SIAM, Philadelphia, 2000.doi: 10.1137/1.9780898719598. |
[26] |
X. Wan, D. Xiu and G. E. Karniadakis, Stochastic solutions for the two-dimensional advection-diffusion equation, SIAM J. Sci. Comp., 26 (2004), 578-590.doi: 10.1137/S106482750342684X. |
[27] |
D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comp., 24 (2002), 619-644.doi: 10.1137/S1064827501387826. |