May  2013, 18(3): 681-691. doi: 10.3934/dcdsb.2013.18.681

On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian

1. 

Department of Mathematics, Pohang University of Science and Technology, Pohang, Gyeongbuk

2. 

Department of Mathematics, University of California, Riverside, Riverside, CA 92521, United States

Received  September 2012 Revised  September 2012 Published  December 2012

We establish the exponential time decay rate of smooth solutions of small amplitude to the Vlasov-Poisson-Fokker-Planck equations to the Maxwellian both in the whole space and in the periodic box via the uniform-in-time energy estimates and also the macroscopic equations.
Citation: Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681
References:
[1]

F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9), 81 (2002), 1135-1159. doi: 10.1016/S0021-7824(02)01264-3.

[2]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal., 111 (1993), 239-258. doi: 10.1006/jfan.1993.1011.

[3]

F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122 (1995), 225-238. doi: 10.1006/jdeq.1995.1146.

[4]

F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514.

[5]

A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Math. Methods Appl. Sci., 21 (1998), 985-1014. doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.

[6]

J. Carrillo, R. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinet. Relat. Models, 4 (2011), 227-258. doi: 10.3934/krm.2011.4.227.

[7]

J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839. doi: 10.1002/mma.1670181006.

[8]

J. A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal., 141 (1996), 99-132. doi: 10.1006/jfan.1996.0123.

[9]

L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42. doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.

[10]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.

[11]

R. Duan and R. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[12]

R. Esposito, Y. Guo and R. Marra, Stability of the front under a Vlasov-Fokker-Planck dynamics, Arch. Ration. Mech. Anal., 195 (2010), 75-116. doi: 10.1007/s00205-008-0184-7.

[13]

T. Goudon, L. He, A. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium, SIAM J. Math. Anal., 42 (2010), 2177-2202. doi: 10.1137/090776755.

[14]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135. doi: 10.1002/cpa.10040.

[15]

L. Hormander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.

[16]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218. doi: 10.1007/s00205-003-0276-3.

[17]

T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2.

[18]

C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., 261 (2006), 629-672. doi: 10.1007/s00220-005-1455-x.

[19]

K. Ono and W. A. Strauss, Regular solutions of the Vlasov-Poisson-Fokker-Planck system, Discrete Contin. Dynam. Systems, 6 (2000), 751-772. doi: 10.3934/dcds.2000.6.751.

[20]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77. doi: 10.1016/0022-0396(92)90135-A.

[21]

E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[22]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339. doi: 10.1007/s00205-007-0067-3.

[23]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141 pp. doi: 10.1090/S0065-9266-09-00567-5.

[24]

H. D. Victory, Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555. doi: 10.1016/0022-247X(91)90324-S.

[25]

H. D. Victory, Jr. and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana Univ. Math. J., 39 (1990), 105-156. doi: 10.1512/iumj.1990.39.39009.

show all references

References:
[1]

F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9), 81 (2002), 1135-1159. doi: 10.1016/S0021-7824(02)01264-3.

[2]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal., 111 (1993), 239-258. doi: 10.1006/jfan.1993.1011.

[3]

F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122 (1995), 225-238. doi: 10.1006/jdeq.1995.1146.

[4]

F. Bouchut and J. Dolbeault, On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514.

[5]

A. Carpio, Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Math. Methods Appl. Sci., 21 (1998), 985-1014. doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.

[6]

J. Carrillo, R. Duan and A. Moussa, Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system, Kinet. Relat. Models, 4 (2011), 227-258. doi: 10.3934/krm.2011.4.227.

[7]

J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839. doi: 10.1002/mma.1670181006.

[8]

J. A. Carrillo, J. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal., 141 (1996), 99-132. doi: 10.1006/jfan.1996.0123.

[9]

L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42. doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.

[10]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.

[11]

R. Duan and R. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbbR^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[12]

R. Esposito, Y. Guo and R. Marra, Stability of the front under a Vlasov-Fokker-Planck dynamics, Arch. Ration. Mech. Anal., 195 (2010), 75-116. doi: 10.1007/s00205-008-0184-7.

[13]

T. Goudon, L. He, A. Moussa and P. Zhang, The Navier-Stokes-Vlasov-Fokker-Planck system near equilibrium, SIAM J. Math. Anal., 42 (2010), 2177-2202. doi: 10.1137/090776755.

[14]

Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135. doi: 10.1002/cpa.10040.

[15]

L. Hormander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.

[16]

F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004), 151-218. doi: 10.1007/s00205-003-0276-3.

[17]

T.-P. Liu and S.-H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Comm. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2.

[18]

C. Mouhot, Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., 261 (2006), 629-672. doi: 10.1007/s00220-005-1455-x.

[19]

K. Ono and W. A. Strauss, Regular solutions of the Vlasov-Poisson-Fokker-Planck system, Discrete Contin. Dynam. Systems, 6 (2000), 751-772. doi: 10.3934/dcds.2000.6.751.

[20]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77. doi: 10.1016/0022-0396(92)90135-A.

[21]

E. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[22]

R. M. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339. doi: 10.1007/s00205-007-0067-3.

[23]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141 pp. doi: 10.1090/S0065-9266-09-00567-5.

[24]

H. D. Victory, Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555. doi: 10.1016/0022-247X(91)90324-S.

[25]

H. D. Victory, Jr. and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana Univ. Math. J., 39 (1990), 105-156. doi: 10.1512/iumj.1990.39.39009.

[1]

Mingying Zhong. Diffusion limit and the optimal convergence rate of the Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2022, 15 (1) : 1-26. doi: 10.3934/krm.2021041

[2]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[3]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[4]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[5]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic and Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[6]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[7]

Roman Shvydkoy. Global hypocoercivity of kinetic Fokker-Planck-Alignment equations. Kinetic and Related Models, 2022, 15 (2) : 213-237. doi: 10.3934/krm.2022005

[8]

José A. Carrillo, Young-Pil Choi, Yingping Peng. Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system. Kinetic and Related Models, 2022, 15 (3) : 355-384. doi: 10.3934/krm.2021052

[9]

Gianluca Favre, Marlies Pirner, Christian Schmeiser. Thermalization of a rarefied gas with total energy conservation: Existence, hypocoercivity, macroscopic limit. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022015

[10]

Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021

[11]

Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049

[12]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic and Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[13]

Maxime Herda, Luis Miguel Rodrigues. Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations. Kinetic and Related Models, 2019, 12 (3) : 593-636. doi: 10.3934/krm.2019024

[14]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic and Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[15]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic and Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[16]

Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks and Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002

[17]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic and Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[18]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[19]

Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic and Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009

[20]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (338)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]