May  2013, 18(3): 681-691. doi: 10.3934/dcdsb.2013.18.681

On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian

1. 

Department of Mathematics, Pohang University of Science and Technology, Pohang, Gyeongbuk

2. 

Department of Mathematics, University of California, Riverside, Riverside, CA 92521, United States

Received  September 2012 Revised  September 2012 Published  December 2012

We establish the exponential time decay rate of smooth solutions of small amplitude to the Vlasov-Poisson-Fokker-Planck equations to the Maxwellian both in the whole space and in the periodic box via the uniform-in-time energy estimates and also the macroscopic equations.
Citation: Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681
References:
[1]

J. Math. Pures Appl. (9), 81 (2002), 1135-1159. doi: 10.1016/S0021-7824(02)01264-3.  Google Scholar

[2]

J. Funct. Anal., 111 (1993), 239-258. doi: 10.1006/jfan.1993.1011.  Google Scholar

[3]

J. Differential Equations, 122 (1995), 225-238. doi: 10.1006/jdeq.1995.1146.  Google Scholar

[4]

Differential Integral Equations, 8 (1995), 487-514.  Google Scholar

[5]

Math. Methods Appl. Sci., 21 (1998), 985-1014. doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.  Google Scholar

[6]

Kinet. Relat. Models, 4 (2011), 227-258. doi: 10.3934/krm.2011.4.227.  Google Scholar

[7]

Math. Methods Appl. Sci., 18 (1995), 825-839. doi: 10.1002/mma.1670181006.  Google Scholar

[8]

J. Funct. Anal., 141 (1996), 99-132. doi: 10.1006/jfan.1996.0123.  Google Scholar

[9]

Comm. Pure Appl. Math., 54 (2001), 1-42. doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.  Google Scholar

[10]

Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.  Google Scholar

[11]

Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.  Google Scholar

[12]

Arch. Ration. Mech. Anal., 195 (2010), 75-116. doi: 10.1007/s00205-008-0184-7.  Google Scholar

[13]

SIAM J. Math. Anal., 42 (2010), 2177-2202. doi: 10.1137/090776755.  Google Scholar

[14]

Comm. Pure Appl. Math., 55 (2002), 1104-1135. doi: 10.1002/cpa.10040.  Google Scholar

[15]

Acta Math., 119 (1967), 147-171.  Google Scholar

[16]

Arch. Ration. Mech. Anal., 171 (2004), 151-218. doi: 10.1007/s00205-003-0276-3.  Google Scholar

[17]

Comm. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2.  Google Scholar

[18]

Comm. Math. Phys., 261 (2006), 629-672. doi: 10.1007/s00220-005-1455-x.  Google Scholar

[19]

Discrete Contin. Dynam. Systems, 6 (2000), 751-772. doi: 10.3934/dcds.2000.6.751.  Google Scholar

[20]

J. Differential Equations, 99 (1992), 59-77. doi: 10.1016/0022-0396(92)90135-A.  Google Scholar

[21]

Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.  Google Scholar

[22]

Arch. Ration. Mech. Anal., 187 (2008), 287-339. doi: 10.1007/s00205-007-0067-3.  Google Scholar

[23]

Mem. Amer. Math. Soc., 202 (2009), iv+141 pp. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[24]

J. Math. Anal. Appl., 160 (1991), 525-555. doi: 10.1016/0022-247X(91)90324-S.  Google Scholar

[25]

Indiana Univ. Math. J., 39 (1990), 105-156. doi: 10.1512/iumj.1990.39.39009.  Google Scholar

show all references

References:
[1]

J. Math. Pures Appl. (9), 81 (2002), 1135-1159. doi: 10.1016/S0021-7824(02)01264-3.  Google Scholar

[2]

J. Funct. Anal., 111 (1993), 239-258. doi: 10.1006/jfan.1993.1011.  Google Scholar

[3]

J. Differential Equations, 122 (1995), 225-238. doi: 10.1006/jdeq.1995.1146.  Google Scholar

[4]

Differential Integral Equations, 8 (1995), 487-514.  Google Scholar

[5]

Math. Methods Appl. Sci., 21 (1998), 985-1014. doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B.  Google Scholar

[6]

Kinet. Relat. Models, 4 (2011), 227-258. doi: 10.3934/krm.2011.4.227.  Google Scholar

[7]

Math. Methods Appl. Sci., 18 (1995), 825-839. doi: 10.1002/mma.1670181006.  Google Scholar

[8]

J. Funct. Anal., 141 (1996), 99-132. doi: 10.1006/jfan.1996.0123.  Google Scholar

[9]

Comm. Pure Appl. Math., 54 (2001), 1-42. doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.  Google Scholar

[10]

Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9.  Google Scholar

[11]

Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.  Google Scholar

[12]

Arch. Ration. Mech. Anal., 195 (2010), 75-116. doi: 10.1007/s00205-008-0184-7.  Google Scholar

[13]

SIAM J. Math. Anal., 42 (2010), 2177-2202. doi: 10.1137/090776755.  Google Scholar

[14]

Comm. Pure Appl. Math., 55 (2002), 1104-1135. doi: 10.1002/cpa.10040.  Google Scholar

[15]

Acta Math., 119 (1967), 147-171.  Google Scholar

[16]

Arch. Ration. Mech. Anal., 171 (2004), 151-218. doi: 10.1007/s00205-003-0276-3.  Google Scholar

[17]

Comm. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2.  Google Scholar

[18]

Comm. Math. Phys., 261 (2006), 629-672. doi: 10.1007/s00220-005-1455-x.  Google Scholar

[19]

Discrete Contin. Dynam. Systems, 6 (2000), 751-772. doi: 10.3934/dcds.2000.6.751.  Google Scholar

[20]

J. Differential Equations, 99 (1992), 59-77. doi: 10.1016/0022-0396(92)90135-A.  Google Scholar

[21]

Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.  Google Scholar

[22]

Arch. Ration. Mech. Anal., 187 (2008), 287-339. doi: 10.1007/s00205-007-0067-3.  Google Scholar

[23]

Mem. Amer. Math. Soc., 202 (2009), iv+141 pp. doi: 10.1090/S0065-9266-09-00567-5.  Google Scholar

[24]

J. Math. Anal. Appl., 160 (1991), 525-555. doi: 10.1016/0022-247X(91)90324-S.  Google Scholar

[25]

Indiana Univ. Math. J., 39 (1990), 105-156. doi: 10.1512/iumj.1990.39.39009.  Google Scholar

[1]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[2]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[3]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[4]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[5]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[6]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[7]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[8]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[9]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377

[11]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[12]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[13]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[14]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[15]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[16]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[17]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[18]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[19]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[20]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (207)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]