-
Previous Article
Nonlocal generalized models of predator-prey systems
- DCDS-B Home
- This Issue
-
Next Article
The spectral collocation method for stochastic differential equations
On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian
1. | Department of Mathematics, Pohang University of Science and Technology, Pohang, Gyeongbuk |
2. | Department of Mathematics, University of California, Riverside, Riverside, CA 92521, United States |
References:
[1] |
J. Math. Pures Appl. (9), 81 (2002), 1135-1159.
doi: 10.1016/S0021-7824(02)01264-3. |
[2] |
J. Funct. Anal., 111 (1993), 239-258.
doi: 10.1006/jfan.1993.1011. |
[3] |
J. Differential Equations, 122 (1995), 225-238.
doi: 10.1006/jdeq.1995.1146. |
[4] |
Differential Integral Equations, 8 (1995), 487-514. |
[5] |
Math. Methods Appl. Sci., 21 (1998), 985-1014.
doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B. |
[6] |
Kinet. Relat. Models, 4 (2011), 227-258.
doi: 10.3934/krm.2011.4.227. |
[7] |
Math. Methods Appl. Sci., 18 (1995), 825-839.
doi: 10.1002/mma.1670181006. |
[8] |
J. Funct. Anal., 141 (1996), 99-132.
doi: 10.1006/jfan.1996.0123. |
[9] |
Comm. Pure Appl. Math., 54 (2001), 1-42.
doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q. |
[10] |
Invent. Math., 159 (2005), 245-316.
doi: 10.1007/s00222-004-0389-9. |
[11] |
Arch. Ration. Mech. Anal., 199 (2011), 291-328.
doi: 10.1007/s00205-010-0318-6. |
[12] |
Arch. Ration. Mech. Anal., 195 (2010), 75-116.
doi: 10.1007/s00205-008-0184-7. |
[13] |
SIAM J. Math. Anal., 42 (2010), 2177-2202.
doi: 10.1137/090776755. |
[14] |
Comm. Pure Appl. Math., 55 (2002), 1104-1135.
doi: 10.1002/cpa.10040. |
[15] |
Acta Math., 119 (1967), 147-171. |
[16] |
Arch. Ration. Mech. Anal., 171 (2004), 151-218.
doi: 10.1007/s00205-003-0276-3. |
[17] |
Comm. Math. Phys., 246 (2004), 133-179.
doi: 10.1007/s00220-003-1030-2. |
[18] |
Comm. Math. Phys., 261 (2006), 629-672.
doi: 10.1007/s00220-005-1455-x. |
[19] |
Discrete Contin. Dynam. Systems, 6 (2000), 751-772.
doi: 10.3934/dcds.2000.6.751. |
[20] |
J. Differential Equations, 99 (1992), 59-77.
doi: 10.1016/0022-0396(92)90135-A. |
[21] |
Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. |
[22] |
Arch. Ration. Mech. Anal., 187 (2008), 287-339.
doi: 10.1007/s00205-007-0067-3. |
[23] |
Mem. Amer. Math. Soc., 202 (2009), iv+141 pp.
doi: 10.1090/S0065-9266-09-00567-5. |
[24] |
J. Math. Anal. Appl., 160 (1991), 525-555.
doi: 10.1016/0022-247X(91)90324-S. |
[25] |
Indiana Univ. Math. J., 39 (1990), 105-156.
doi: 10.1512/iumj.1990.39.39009. |
show all references
References:
[1] |
J. Math. Pures Appl. (9), 81 (2002), 1135-1159.
doi: 10.1016/S0021-7824(02)01264-3. |
[2] |
J. Funct. Anal., 111 (1993), 239-258.
doi: 10.1006/jfan.1993.1011. |
[3] |
J. Differential Equations, 122 (1995), 225-238.
doi: 10.1006/jdeq.1995.1146. |
[4] |
Differential Integral Equations, 8 (1995), 487-514. |
[5] |
Math. Methods Appl. Sci., 21 (1998), 985-1014.
doi: 10.1002/(SICI)1099-1476(19980725)21:11<985::AID-MMA919>3.0.CO;2-B. |
[6] |
Kinet. Relat. Models, 4 (2011), 227-258.
doi: 10.3934/krm.2011.4.227. |
[7] |
Math. Methods Appl. Sci., 18 (1995), 825-839.
doi: 10.1002/mma.1670181006. |
[8] |
J. Funct. Anal., 141 (1996), 99-132.
doi: 10.1006/jfan.1996.0123. |
[9] |
Comm. Pure Appl. Math., 54 (2001), 1-42.
doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q. |
[10] |
Invent. Math., 159 (2005), 245-316.
doi: 10.1007/s00222-004-0389-9. |
[11] |
Arch. Ration. Mech. Anal., 199 (2011), 291-328.
doi: 10.1007/s00205-010-0318-6. |
[12] |
Arch. Ration. Mech. Anal., 195 (2010), 75-116.
doi: 10.1007/s00205-008-0184-7. |
[13] |
SIAM J. Math. Anal., 42 (2010), 2177-2202.
doi: 10.1137/090776755. |
[14] |
Comm. Pure Appl. Math., 55 (2002), 1104-1135.
doi: 10.1002/cpa.10040. |
[15] |
Acta Math., 119 (1967), 147-171. |
[16] |
Arch. Ration. Mech. Anal., 171 (2004), 151-218.
doi: 10.1007/s00205-003-0276-3. |
[17] |
Comm. Math. Phys., 246 (2004), 133-179.
doi: 10.1007/s00220-003-1030-2. |
[18] |
Comm. Math. Phys., 261 (2006), 629-672.
doi: 10.1007/s00220-005-1455-x. |
[19] |
Discrete Contin. Dynam. Systems, 6 (2000), 751-772.
doi: 10.3934/dcds.2000.6.751. |
[20] |
J. Differential Equations, 99 (1992), 59-77.
doi: 10.1016/0022-0396(92)90135-A. |
[21] |
Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. |
[22] |
Arch. Ration. Mech. Anal., 187 (2008), 287-339.
doi: 10.1007/s00205-007-0067-3. |
[23] |
Mem. Amer. Math. Soc., 202 (2009), iv+141 pp.
doi: 10.1090/S0065-9266-09-00567-5. |
[24] |
J. Math. Anal. Appl., 160 (1991), 525-555.
doi: 10.1016/0022-247X(91)90324-S. |
[25] |
Indiana Univ. Math. J., 39 (1990), 105-156.
doi: 10.1512/iumj.1990.39.39009. |
[1] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[2] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[3] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[4] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004 |
[5] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[6] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[7] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[8] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[9] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[10] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377 |
[11] |
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015 |
[12] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[13] |
Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021078 |
[14] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[15] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[16] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[17] |
Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021062 |
[18] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[19] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 |
[20] |
Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021048 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]