\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multidimensional stability of planar traveling waves for an integrodifference model

Abstract Related Papers Cited by
  • This paper studies the multidimensional stability of planar traveling waves for integrodifference equations. It is proved that for a Gaussian dispersal kernel, if the traveling wave is exponentially orbitally stable in one space dimension, then the corresponding planar wave is stable in $H^m(\mathbb{R}^N)$, $N\ge 4$, $m\ge [N/2]+1$, with the perturbation decaying at algebraic rate.
    Mathematics Subject Classification: Primary: 45P05, 39A30; Secondary: 47G10, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.doi: 10.1016/0362-546X(78)90015-9.

    [2]

    P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.

    [3]

    R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), 797-855.doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1.

    [4]

    M. Gil', "Difference Equations in Normed Spaces. Stability and Oscillations," North-Holland Mathematics Studies, 206, Elsevier Science B.V., Amsterdam, 2007.

    [5]

    J. Goodman, Stability of viscous scalar shock fronts in several dimensions, Trans. Amer. Math. Soc., 311 (1989), 683-695.doi: 10.2307/2001146.

    [6]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

    [7]

    S. Hsu and X. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.doi: 10.1137/070703016.

    [8]

    T. Kapitula, Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc., 349 (1997), 257-269.doi: 10.1090/S0002-9947-97-01668-1.

    [9]

    M. Kot and W. Schaffer, Discrete-time growth-dispersal models, Math. Biosci., 80 (1986), 109-136.doi: 10.1016/0025-5564(86)90069-6.

    [10]

    M. Kot, Discrete-time travelling waves: Ecological examples, J. Math. Biol., 30 (1992), 413-436.doi: 10.1007/BF00173295.

    [11]

    M. Kot, M. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms, Ecology, 77 (1996), 2027-2042.

    [12]

    C. Levermore and J. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. II, Comm. Partial Differential Equations, 17 (1992), 1901-1924.doi: 10.1080/03605309208820908.

    [13]

    B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.doi: 10.1007/s00285-008-0175-1.

    [14]

    G. Lin and W. Li, Spreading speeds and traveling wavefronts for second order integrodifference equations, J. Math. Anal. Appl., 361 (2010), 520-532.doi: 10.1016/j.jmaa.2009.07.035.

    [15]

    G. Lin, W. Li and S. Ruan, Asymptotic stability of monostable wavefronts in disctrete-time integral recursions, Sci. China Math., 53 (2010), 1185-1194.doi: 10.1007/s11425-009-0123-6.

    [16]

    R. Lui, A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data, SIAM J. Math. Anal., 13 (1982), 913-937.doi: 10.1137/0513064.

    [17]

    R. Lui, A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support, SIAM J. Math. Anal., 13 (1982), 938-953.doi: 10.1137/0513065.

    [18]

    R. LuiExistence and stability of travelling wave solutions of a nonlinear integral operator, J. Math. Biol., 16 (1982/83), 199-220. doi: 10.1007/BF00276502.

    [19]

    R. Lui, A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case, SIAM J. Math. Anal., 16 (1985), 1180-1206.doi: 10.1137/0516087.

    [20]

    J. Miller and H. Zeng, Stability of travelling waves for systems of nonlinear integral recursions in spatial population biology, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 895-925.doi: 10.3934/dcdsb.2011.16.895.

    [21]

    M. Neubert, M. Kot and M. Lewis, Dispersal and pattern-formation in a discrete-time predator-prey model, Theoretical Population Biology, 48 (1995), 7-43.

    [22]

    D. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math., 22 (1976), 312-355.

    [23]

    H. Weinberger, Asymptotic behavior of a model in population genetics, in "Nonlinear Partial Differential Equations and Applications" (Proc. Special Sem., Indiana Univ., Bloomington, Ind., 1976-1977), Lecture Notes in Math., Vol. 648, Springer, Berlin, (1978), 47-96.

    [24]

    H. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.doi: 10.1137/0513028.

    [25]

    J. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. I, Comm. Partial Differential Equations, 17 (1992), 1889-1899.doi: 10.1080/03605309208820907.

    [26]

    K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), 741-871.doi: 10.1512/iumj.1998.47.1604.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return