May  2013, 18(3): 741-751. doi: 10.3934/dcdsb.2013.18.741

Multidimensional stability of planar traveling waves for an integrodifference model

1. 

Dept. of Mathematics and Statistics, Georgetown University, Washington DC 20057, United States

2. 

Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

Received  December 2011 Revised  September 2012 Published  December 2012

This paper studies the multidimensional stability of planar traveling waves for integrodifference equations. It is proved that for a Gaussian dispersal kernel, if the traveling wave is exponentially orbitally stable in one space dimension, then the corresponding planar wave is stable in $H^m(\mathbb{R}^N)$, $N\ge 4$, $m\ge [N/2]+1$, with the perturbation decaying at algebraic rate.
Citation: Judith R. Miller, Huihui Zeng. Multidimensional stability of planar traveling waves for an integrodifference model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 741-751. doi: 10.3934/dcdsb.2013.18.741
References:
[1]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation,, Nonlinear Anal., 2 (1978), 721. doi: 10.1016/0362-546X(78)90015-9. Google Scholar

[2]

P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335. Google Scholar

[3]

R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles,, Comm. Pure Appl. Math., 51 (1998), 797. doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1. Google Scholar

[4]

M. Gil', "Difference Equations in Normed Spaces. Stability and Oscillations,", North-Holland Mathematics Studies, 206 (2007). Google Scholar

[5]

J. Goodman, Stability of viscous scalar shock fronts in several dimensions,, Trans. Amer. Math. Soc., 311 (1989), 683. doi: 10.2307/2001146. Google Scholar

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981). Google Scholar

[7]

S. Hsu and X. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776. doi: 10.1137/070703016. Google Scholar

[8]

T. Kapitula, Multidimensional stability of planar travelling waves,, Trans. Amer. Math. Soc., 349 (1997), 257. doi: 10.1090/S0002-9947-97-01668-1. Google Scholar

[9]

M. Kot and W. Schaffer, Discrete-time growth-dispersal models,, Math. Biosci., 80 (1986), 109. doi: 10.1016/0025-5564(86)90069-6. Google Scholar

[10]

M. Kot, Discrete-time travelling waves: Ecological examples,, J. Math. Biol., 30 (1992), 413. doi: 10.1007/BF00173295. Google Scholar

[11]

M. Kot, M. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms,, Ecology, 77 (1996), 2027. Google Scholar

[12]

C. Levermore and J. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. II,, Comm. Partial Differential Equations, 17 (1992), 1901. doi: 10.1080/03605309208820908. Google Scholar

[13]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323. doi: 10.1007/s00285-008-0175-1. Google Scholar

[14]

G. Lin and W. Li, Spreading speeds and traveling wavefronts for second order integrodifference equations,, J. Math. Anal. Appl., 361 (2010), 520. doi: 10.1016/j.jmaa.2009.07.035. Google Scholar

[15]

G. Lin, W. Li and S. Ruan, Asymptotic stability of monostable wavefronts in disctrete-time integral recursions,, Sci. China Math., 53 (2010), 1185. doi: 10.1007/s11425-009-0123-6. Google Scholar

[16]

R. Lui, A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data,, SIAM J. Math. Anal., 13 (1982), 913. doi: 10.1137/0513064. Google Scholar

[17]

R. Lui, A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support,, SIAM J. Math. Anal., 13 (1982), 938. doi: 10.1137/0513065. Google Scholar

[18]

R. Lui, Existence and stability of travelling wave solutions of a nonlinear integral operator,, J. Math. Biol., 16 (): 199. doi: 10.1007/BF00276502. Google Scholar

[19]

R. Lui, A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case,, SIAM J. Math. Anal., 16 (1985), 1180. doi: 10.1137/0516087. Google Scholar

[20]

J. Miller and H. Zeng, Stability of travelling waves for systems of nonlinear integral recursions in spatial population biology,, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 895. doi: 10.3934/dcdsb.2011.16.895. Google Scholar

[21]

M. Neubert, M. Kot and M. Lewis, Dispersal and pattern-formation in a discrete-time predator-prey model,, Theoretical Population Biology, 48 (1995), 7. Google Scholar

[22]

D. Sattinger, On the stability of waves of nonlinear parabolic systems,, Advances in Math., 22 (1976), 312. Google Scholar

[23]

H. Weinberger, Asymptotic behavior of a model in population genetics,, in, (1978), 1976. Google Scholar

[24]

H. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. Google Scholar

[25]

J. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. I,, Comm. Partial Differential Equations, 17 (1992), 1889. doi: 10.1080/03605309208820907. Google Scholar

[26]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves,, Indiana Univ. Math. J., 47 (1998), 741. doi: 10.1512/iumj.1998.47.1604. Google Scholar

show all references

References:
[1]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation,, Nonlinear Anal., 2 (1978), 721. doi: 10.1016/0362-546X(78)90015-9. Google Scholar

[2]

P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335. Google Scholar

[3]

R. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles,, Comm. Pure Appl. Math., 51 (1998), 797. doi: 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO;2-1. Google Scholar

[4]

M. Gil', "Difference Equations in Normed Spaces. Stability and Oscillations,", North-Holland Mathematics Studies, 206 (2007). Google Scholar

[5]

J. Goodman, Stability of viscous scalar shock fronts in several dimensions,, Trans. Amer. Math. Soc., 311 (1989), 683. doi: 10.2307/2001146. Google Scholar

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981). Google Scholar

[7]

S. Hsu and X. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776. doi: 10.1137/070703016. Google Scholar

[8]

T. Kapitula, Multidimensional stability of planar travelling waves,, Trans. Amer. Math. Soc., 349 (1997), 257. doi: 10.1090/S0002-9947-97-01668-1. Google Scholar

[9]

M. Kot and W. Schaffer, Discrete-time growth-dispersal models,, Math. Biosci., 80 (1986), 109. doi: 10.1016/0025-5564(86)90069-6. Google Scholar

[10]

M. Kot, Discrete-time travelling waves: Ecological examples,, J. Math. Biol., 30 (1992), 413. doi: 10.1007/BF00173295. Google Scholar

[11]

M. Kot, M. Lewis and P. van den Driessche, Dispersal data and the spread of invading organisms,, Ecology, 77 (1996), 2027. Google Scholar

[12]

C. Levermore and J. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. II,, Comm. Partial Differential Equations, 17 (1992), 1901. doi: 10.1080/03605309208820908. Google Scholar

[13]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323. doi: 10.1007/s00285-008-0175-1. Google Scholar

[14]

G. Lin and W. Li, Spreading speeds and traveling wavefronts for second order integrodifference equations,, J. Math. Anal. Appl., 361 (2010), 520. doi: 10.1016/j.jmaa.2009.07.035. Google Scholar

[15]

G. Lin, W. Li and S. Ruan, Asymptotic stability of monostable wavefronts in disctrete-time integral recursions,, Sci. China Math., 53 (2010), 1185. doi: 10.1007/s11425-009-0123-6. Google Scholar

[16]

R. Lui, A nonlinear integral operator arising from a model in population genetics. I. Monotone initial data,, SIAM J. Math. Anal., 13 (1982), 913. doi: 10.1137/0513064. Google Scholar

[17]

R. Lui, A nonlinear integral operator arising from a model in population genetics. II. Initial data with compact support,, SIAM J. Math. Anal., 13 (1982), 938. doi: 10.1137/0513065. Google Scholar

[18]

R. Lui, Existence and stability of travelling wave solutions of a nonlinear integral operator,, J. Math. Biol., 16 (): 199. doi: 10.1007/BF00276502. Google Scholar

[19]

R. Lui, A nonlinear integral operator arising from a model in population genetics. III. Heterozygote inferior case,, SIAM J. Math. Anal., 16 (1985), 1180. doi: 10.1137/0516087. Google Scholar

[20]

J. Miller and H. Zeng, Stability of travelling waves for systems of nonlinear integral recursions in spatial population biology,, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 895. doi: 10.3934/dcdsb.2011.16.895. Google Scholar

[21]

M. Neubert, M. Kot and M. Lewis, Dispersal and pattern-formation in a discrete-time predator-prey model,, Theoretical Population Biology, 48 (1995), 7. Google Scholar

[22]

D. Sattinger, On the stability of waves of nonlinear parabolic systems,, Advances in Math., 22 (1976), 312. Google Scholar

[23]

H. Weinberger, Asymptotic behavior of a model in population genetics,, in, (1978), 1976. Google Scholar

[24]

H. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353. doi: 10.1137/0513028. Google Scholar

[25]

J. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation. I,, Comm. Partial Differential Equations, 17 (1992), 1889. doi: 10.1080/03605309208820907. Google Scholar

[26]

K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves,, Indiana Univ. Math. J., 47 (1998), 741. doi: 10.1512/iumj.1998.47.1604. Google Scholar

[1]

Grégory Faye. Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2473-2496. doi: 10.3934/dcds.2016.36.2473

[2]

Hua Chen, Ling-Jun Wang. A perturbation approach for the transverse spectral stability of small periodic traveling waves of the ZK equation. Kinetic & Related Models, 2012, 5 (2) : 261-281. doi: 10.3934/krm.2012.5.261

[3]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[4]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

[5]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure & Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[6]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[7]

Joseph Thirouin. Classification of traveling waves for a quadratic Szegő equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3099-3122. doi: 10.3934/dcds.2019128

[8]

Yaping Wu, Niannian Yan. Stability of traveling waves for autocatalytic reaction systems with strong decay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1601-1633. doi: 10.3934/dcdsb.2017033

[9]

Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659

[10]

Grigori Chapiro, Lucas Furtado, Dan Marchesin, Stephen Schecter. Stability of interacting traveling waves in reaction-convection-diffusion systems. Conference Publications, 2015, 2015 (special) : 258-266. doi: 10.3934/proc.2015.0258

[11]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[12]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[13]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[14]

Tong Li, Jeungeun Park. Stability of traveling waves of models for image processing with non-convex nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 959-985. doi: 10.3934/cpaa.2018047

[15]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[16]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

[17]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[18]

Emile Franc Doungmo Goufo, Abdon Atangana. Dynamics of traveling waves of variable order hyperbolic Liouville equation: Regulation and control. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 645-662. doi: 10.3934/dcdss.2020035

[19]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[20]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]