Citation: |
[1] |
V. Bansaye and A. Lambert, Past, growth and persistence of source-sink metapopulations, preprint, arXiv:1111.2535. |
[2] |
G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result, Methods Appl. Anal., 16 (2009), 321-340. |
[3] |
J. Busca and B. Sirakov, Harnack type estimates for nonlinear elliptic systems and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 543-590.doi: 10.1016/j.anihpc.2003.06.001. |
[4] |
A. Calsina and S. Cuadrado, Stationary solutions of a selection mutation model: The pure mutation case, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1091-1117.doi: 10.1142/S0218202505000637. |
[5] |
J. A. Carrillo, S. Cuadrado and B. Perthame, Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model, Math. Biosci., 205 (2007), 137-161.doi: 10.1016/j.mbs.2006.09.012. |
[6] |
N. Champagnat, R. Ferrière and S. Méléard, From individual stochastic processes to macroscopic models in adaptive evolution, Stoch. Models, 24 (2008), 2-44.doi: 10.1080/15326340802437710. |
[7] |
N. Champagnat, R. Ferrière and S. Méléard, "Individual-Based Probabilistic Models of Adaptive Evolution and Various Scaling Approximations," Progress in Probability, 59, Birkhäuser, 2008.doi: 10.1007/978-3-7643-8458-6_6. |
[8] |
N. Champagnat and P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via several resources, Journal of Differential Equations, 261 (2011), 179-195.doi: 10.1016/j.jde.2011.03.007. |
[9] |
M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
L. Desvillettes, P.-E. Jabin, S. Mischler and G. Raoul, On mutation-selection dynamics for continuous structured populations, Commun. Math. Sci., 6 (2008), 729-747. |
[11] |
O. Diekmann, A beginner's guide to adaptive dynamics, in "Mathematical Modelling of Population Dynamics," Banach Center Publ., 63, Polish Acad. Sci., Warsaw, (2004), 47-86. |
[12] |
O. Diekmann, P.-E. Jabin, S. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Th. Pop. Biol., 67 (2005), 257-271. |
[13] |
I. Eshel, Evolutionary and continuous stability, Journal of Theoretical Biology, 103 (1983), 99-111.doi: 10.1016/0022-5193(83)90201-1. |
[14] |
L. C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. R. Soc. Edinb. Sec. A, 111 (1989), 359-375.doi: 10.1017/S0308210500018631. |
[15] |
S. A. H. Geritz, E. Kisdi, G. Mészena and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol, 12 (1998), 35-57. |
[16] |
S. A. H. Geritz, J. A. J. Metz, E. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027. |
[17] |
P.-E. Jabin and G. Raoul, Selection dynamics with competition, J. Math. Biol., to appear. doi: 10.1007/s00285-010-0370-8. |
[18] |
S. A. Levin, Community equilibria and stability, and an extension of the competitive exclusion principle, The American Naturalist, 104 (1970), 413-423. |
[19] |
S. Lion and M. van Baalen, Self-structuring in spatial evolutionary ecology, Ecology Letters, 11 (2008), 277-295. |
[20] |
A. Lorz, S. Mirrahimi and B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1071-1098.doi: 10.1080/03605302.2010.538784. |
[21] |
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18. |
[22] |
G. Meszéna, M. Gyllenberg, F. J. Jacobs and J. A. J. Metz, Link between population dynamics and dynamics of Darwinian evolution, Phys. Rev. Lett., 95 (2005), 078105.1-078105.4. |
[23] |
J. A. J. Metz, R. M. Nisbet and S. A. H. Geritz, How should we define "fitness" for general ecological scenarios?, TREE, 7 (1992), 198-202. |
[24] |
S. Mirrahimi and P. E. Souganidis, A homogenization approach for the motion of motor proteins, Nonlinear Differential Equations and Applications NoDEA, to appear. |
[25] |
B. Perthame and G. Barles, Dirac concentrations in Lotka-Volterra parabolic {PDEs}, Indiana Univ. Math. J., 57 (2008), 3275-3301.doi: 10.1512/iumj.2008.57.3398. |
[26] |
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: a homogenization approach, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 2055-2071.doi: 10.1016/j.anihpc.2008.10.003. |
[27] |
B. Perthame and P. E. Souganidis, Asymmetric potentials and motor effect: A large deviation approach, Arch. Ration. Mech. Anal., 193 (2009), 153-169.doi: 10.1007/s00205-008-0198-1. |
[28] |
G. Raoul, Long time evolution of populations under selection and vanishing mutations, Acta Applicandae Mathematica, 114 (2011), 1-14.doi: 10.1007/s10440-011-9603-0. |
[29] |
T. W. Schoener, Resource partitioning in ecological communities, Science, 13 (1974), 27-39. |
[30] |
A. Szilágyi and G. Meszéna, Two-patch model of spatial niche segregation, Evolutionary Ecology, 23 (2009), 187-205. |