May  2013, 18(3): 769-782. doi: 10.3934/dcdsb.2013.18.769

Multiple steady states in a mathematical model for interactions between T cells and macrophages

1. 

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam, Germany

Received  August 2011 Revised  November 2012 Published  December 2012

The aim of this paper is to prove results about the existence and stability of multiple steady states in a system of ordinary differential equations introduced by R. Lev Bar-Or [5] to model the interactions between T cells and macrophages. Previous results showed that for certain values of the parameters these equations have three stationary solutions, two of which are stable. Here it is shown that there are values of the parameters for which the number of stationary solutions is at least seven and the number of stable stationary solutions at least four. This requires approaches different to those used in existing work on this subject. In addition, a rather explicit characterization is obtained of regions of parameter space for which the system has a given number of stationary solutions.
Citation: Alan D. Rendall. Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 769-782. doi: 10.3934/dcdsb.2013.18.769
References:
[1]

R. Callard, Decision-making by the immune response,, Immun. and Cell Biol., 85 (2007), 300. Google Scholar

[2]

R. de Waal Malefyt, J. Haanen, H. Spits, M.-G. Roncarolo, A. te Velde, C. Figdor, K. Johnson, R. Kastelein, H. Yssel and J. E. de Vries, Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of Class II major histocompatibility complex expression,, J. Exp. Med., 174 (1991), 915. Google Scholar

[3]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I: Limit sets,, SIAM J. Math. Anal., 13 (1982), 167. doi: 10.1137/0513013. Google Scholar

[4]

E. Klipp, R. Herwig, A. Kowald, C. Wierling and H. Lehrach, "Systems Biology in Practice,", Wiley-VCH, (2005). Google Scholar

[5]

R. Lev Bar-Or, Feedback mechanisms between T helper cells and macrophages in the determination of the immune response,, Math. Biosci., 163 (2000), 35. Google Scholar

[6]

R. M. May, Uses and abuses of mathematics in biology,, Science, 303 (2004), 790. Google Scholar

[7]

K. M. Murphy, P. Travers and M. Walport, "Janeway's Immunobiology,", Garland Science, (2007). Google Scholar

[8]

A. D. Rendall, Analysis of a mathematical model for interactions between T cells and macrophages,, Electr. J. Diff. Eq., 2010 (2010). Google Scholar

[9]

I. Roitt, J. Brostoff, D. Male and D. Roth, "Immunology,", Mosby, (2006). Google Scholar

[10]

L. Steinman, A brief history of Th17, the first major revision of the Th1/Th2 hypothesis of T cell-mediated tissue damage,, Nature Med., 13 (2007), 139. Google Scholar

[11]

H.-J. van den Hamm and R. J. de Boer, From the two-dimensional Th1 and Th2 phenotypes to high-dimensional models for gene regulation,, Int. Immunol., 20 (2008), 1269. Google Scholar

[12]

A. Yates, R. Callard and J. Stark, Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: A model for cellular decision-making,, J. Theor. Biol., 231 (2004), 181. doi: 10.1016/j.jtbi.2004.06.013. Google Scholar

show all references

References:
[1]

R. Callard, Decision-making by the immune response,, Immun. and Cell Biol., 85 (2007), 300. Google Scholar

[2]

R. de Waal Malefyt, J. Haanen, H. Spits, M.-G. Roncarolo, A. te Velde, C. Figdor, K. Johnson, R. Kastelein, H. Yssel and J. E. de Vries, Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of Class II major histocompatibility complex expression,, J. Exp. Med., 174 (1991), 915. Google Scholar

[3]

M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I: Limit sets,, SIAM J. Math. Anal., 13 (1982), 167. doi: 10.1137/0513013. Google Scholar

[4]

E. Klipp, R. Herwig, A. Kowald, C. Wierling and H. Lehrach, "Systems Biology in Practice,", Wiley-VCH, (2005). Google Scholar

[5]

R. Lev Bar-Or, Feedback mechanisms between T helper cells and macrophages in the determination of the immune response,, Math. Biosci., 163 (2000), 35. Google Scholar

[6]

R. M. May, Uses and abuses of mathematics in biology,, Science, 303 (2004), 790. Google Scholar

[7]

K. M. Murphy, P. Travers and M. Walport, "Janeway's Immunobiology,", Garland Science, (2007). Google Scholar

[8]

A. D. Rendall, Analysis of a mathematical model for interactions between T cells and macrophages,, Electr. J. Diff. Eq., 2010 (2010). Google Scholar

[9]

I. Roitt, J. Brostoff, D. Male and D. Roth, "Immunology,", Mosby, (2006). Google Scholar

[10]

L. Steinman, A brief history of Th17, the first major revision of the Th1/Th2 hypothesis of T cell-mediated tissue damage,, Nature Med., 13 (2007), 139. Google Scholar

[11]

H.-J. van den Hamm and R. J. de Boer, From the two-dimensional Th1 and Th2 phenotypes to high-dimensional models for gene regulation,, Int. Immunol., 20 (2008), 1269. Google Scholar

[12]

A. Yates, R. Callard and J. Stark, Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: A model for cellular decision-making,, J. Theor. Biol., 231 (2004), 181. doi: 10.1016/j.jtbi.2004.06.013. Google Scholar

[1]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[2]

Dorothy Bollman, Omar Colón-Reyes. Determining steady state behaviour of discrete monomial dynamical systems. Advances in Mathematics of Communications, 2017, 11 (2) : 283-287. doi: 10.3934/amc.2017019

[3]

Stephen C. Anco, Elena Recio. Accelerating dynamical peakons and their behaviour. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6131-6148. doi: 10.3934/dcds.2019267

[4]

Aicha Balhag, Zaki Chbani, Hassan Riahi. Existence and continuous-discrete asymptotic behaviour for Tikhonov-like dynamical equilibrium systems. Evolution Equations & Control Theory, 2018, 7 (3) : 373-401. doi: 10.3934/eect.2018019

[5]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure & Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[6]

Igor Chueshov, Björn Schmalfuss. Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 315-338. doi: 10.3934/dcds.2007.18.315

[7]

Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973-986. doi: 10.3934/mbe.2011.8.973

[8]

Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367

[9]

El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449

[10]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[11]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[12]

John Erik Fornæss. Sustainable dynamical systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1361-1386. doi: 10.3934/dcds.2003.9.1361

[13]

Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935

[14]

Josiney A. Souza, Tiago A. Pacifico, Hélio V. M. Tozatti. A note on parallelizable dynamical systems. Electronic Research Announcements, 2017, 24: 64-67. doi: 10.3934/era.2017.24.007

[15]

Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91

[16]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[17]

Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432

[18]

Shohel Ahmed, Abdul Alim, Sumaiya Rahman. A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 299-314. doi: 10.3934/naco.2018019

[19]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[20]

Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]