\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment

Abstract Related Papers Cited by
  • We present a mathematical model to study the effects of the regulatory T cells (T$_{\textrm{reg}}$) on Renal Cell Carcinoma (RCC) treatment with sunitinib. The drug sunitinib inhibits the natural self-regulation of the immune system, allowing the effector components of the immune system to function for longer periods of time. This mathematical model builds upon our non-linear ODE model by de Pillis et al. (2009) [13] to incorporate sunitinib treatment, regulatory T cell dynamics, and RCC-specific parameters. The model also elucidates the roles of certain RCC-specific parameters in determining key differences between in silico patients whose immune profiles allowed them to respond well to sunitinib treatment, and those whose profiles did not.
        Simulations from our model are able to produce results that reflect clinical outcomes to sunitinib treatment such as: (1) sunitinib treatments following standard protocols led to improved tumor control (over no treatment) in about 40% of patients; (2) sunitinib treatments at double the standard dose led to a greater response rate in about 15% the patient population; (3) simulations of patient response indicated improved responses to sunitinib treatment when the patient's immune strength scaling and the immune system strength coefficients parameters were low, allowing for a slightly stronger natural immune response.
    Mathematics Subject Classification: Primary: 92C50; Secondary: 92C37, 97M10, 97M60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. K. Abbas, A. H. Lichtman and S. Pillai, "Cellular and Molecular Immunology," Elsevier Saunders, 6th ed. edition, 2007.

    [2]

    Paul Andrew Antony and P. Restifo Nicholas, CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2, Journal of Immunotherapy, 28 (2005), 120-128.doi: 10.1097/01.cji.0000155049.26787.45.

    [3]

    American Surgical Association, New York Surgical Society, Philadelphia Academy of Surgery, Southern Surgical Association (U.S.) and Central Surgical Association, "Annals of Surgery," Lippincott, Williams and Wilkins, 1914.

    [4]

    D. Avigan, Dendritic cells: development, function and potiental use for cancer immunotherapy, Blood Reviews, 13 (1999), 51-64.doi: 10.1016/S0268-960X(99)90023-1.

    [5]

    Nicola Bellomo, Abdelghani Bellouquid, Juan Nieto and Juan Soler, Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1179-1207.doi: 10.1142/S0218202510004568.

    [6]

    Anamika Bose, Jennifer L. Taylor, Sean Alber, Simon C. Watkins, Jorge A. Garcia, Brian I. Rini, Jennifer S. Ko, Peter A. Cohen, James H. Finke, and Walter J. Storkus, Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination, International Journal of Cancer, 129 (2011), 2158-2170.doi: 10.1002/ijc.25863.

    [7]

    G. C. Cesana et al, Characterization of CD4$^+$ CD25$^+$ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma, Journal of Clinical Oncology, 24 (2006), 1169-1177.doi: 10.1200/JCO.2005.03.6830.

    [8]

    Ann F. Chambers, Alan C. Groom and Ian C. MacDonald, Metastasis: Dissemination and growth of cancer cells in metastatic sites, Nature Reviews Cancer, 2 (2002), 563-572.

    [9]

    Z. Z. Chen, S. Y. Zhang, Q. S. Liu, P. F. Xiao, X. Y. Guo and Z. H. Lu, Theoretical and experimental studies on filtering tumor cells from blood cell mixture with dam structure in microuidic devices, In "Engineering in Medicine and Biology 27th Annual Conference," 2005.

    [10]

    Kristin Cobb, Modeling cancer biology, Biomedical Computation Review, (2007), 17-24.

    [11]

    J. Dannull, Z. Su, D. Rizzieri, B. K. Yang, D. Coleman, D. Yancey, A. Zhang, P. Dahm, N. Chao, E. Gilboa and J. Vieweg, Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells, The Journal of Clinical Investigation, 115 (2005), 3623-3633.doi: 10.1172/JCI25947.

    [12]

    R. J. De Boer, H. Mohri, D. D. Ho and A. S. Perelson, Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques, Journal of Immunology, 170 (2003), 2479-2487.

    [13]

    L. G. de Pillis, K. R. Fister, W. Gu, C. Collins, M. Daub, D. Gross, J. Moore and B. Preskill, Mathematical model creation for cancer chemo-immunotherapy, Computational and Mathematical Methods in Medicine, 10 (2009), 165-184.doi: 10.1080/17486700802216301.

    [14]

    L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications, and biological interpretations, Journal of Theoretical Biology, 238 (2006), 841-862.doi: 10.1016/j.jtbi.2005.06.037.

    [15]

    L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Research, 65 (2005), 7950-7958.

    [16]

    L. G. de Pillis and A. E. Radunskaya, Immune response to tumor invasion, In K.J. Bathe, editor, Computational Fluid and Solid Mechanics, M.I.T., 2 (2003), 1661-1668.

    [17]

    V. De Vita, Jr., S. Hellman and S. Rosenberg, "Cancer: Principles and Practice of Oncology," Lippincott Williams & Wilkins, 7th ed. edition, 2000.

    [18]

    Thomas S. Deisboeck, Zhihui Wang, Paul Macklin and Vittorio Cristini, Multiscale cancer modeling, Annual Reviews Biomedical Engineering, 13 (2011), 127-155.

    [19]

    I. M. Desar, J. F. M. Jacobs, C. A. Hulsbergen-vandeKaa, W. J. Oyen, P. F. Mulders, W. T. van der Graaf, G. J. Adema, C. M. van Herpen and I. J. de Vries, Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients, International Journal of Cancer, 129 (2011), 507-512.

    [20]

    A. Diefenbach, E. R. Jensen, A. M. Jamieson and D. Raulet., Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity, Nature, 413 (2001), 165-171.

    [21]

    C. Doehn et al, Mode-of-action, efficacy, and safety of a homologous multi-epitope vaccine in a murine model for adjuvant treatment of renal cell carcinoma, European Urology, 56 (2009), 123-133.

    [22]

    J. Dunne, S. Lynch, C. O'Farrelly, S. Todryk, J. E. Hegarty, C. Feighery and D. G. Doherty, Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15, Journal of Immunology, 167 (2001), 3129-3138.

    [23]

    E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe and J. Verweij, New response evaluation criteria in solid tumors: Revised recist guideline (version 1.1), European Journal of Cancer, 45 (2009), 228-247.

    [24]

    S. Faivre et al, Safety, pharmacokinetic, and antitumor activity of su11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer, Journal of Clinical Oncology, 24 (2006), 25-35.

    [25]

    J. H. Finke et al, Sunitinib reverses type-1 immune suppression and decreases t-regulatory cells in renal cell carcinoma patients, Clinical Cancer Research, 14 (2008), 6674-6682.

    [26]

    Ester Gabetta and Eugenio Regazzini, About the gene families size distribution in a recent model of genome evolution, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1005-1020.doi: 10.1142/S0218202510004519.

    [27]

    P. Gao, Q. Ding, Z. Wu, H. Jiang and Z. Fang, Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma, Cancer Letters, 290 (2010), 157-166.

    [28]

    S. N. Gardner, A mechanistic, predictive model of dose-response curves for cell cycle phase-specific and non-specific drugs, Cancer Research, 60 (2000), 1417-1425.

    [29]

    J. F. Gillooly, J. H. Brown, G. B. West, V. M. Savage and E. L. Charnov, Effects of size and temperature on metabolic rate, Science, 293 (2001), 2248-2251.

    [30]

    R. W. Griffiths, E. Elkord, D. E. Gilham, V. Ramani, N. Clarke, P. L. Stern and R. E. Hawkins, Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival, Cancer Immunology, Immunotherapy, 56 (2007), 1743-1753.

    [31]

    Y. Gu, W. Zhao, F. Meng, B. Qu, X. Zhu, Y. Sun, Y. Shu and Q. Xu, Sunitinib impairs the proliferation and function of human peripheral T cell and prevents t-cell-mediated immune response in mice, Clinical Immunology, 135 (2010), 55-62.

    [32]

    Lijie He, Yuee Teng, Bo Jin, Mingfang Zhao, Ping Yu, Xuejun Hu, Jingdong Zhang, Songbai Li, Yaling Gao and Yunpeng Liu, Initial partial response and stable disease according to RECIST indicate similar survival for chemotherapeutical patients with advanced non-small cell lung cancer, BMC Cancer, 10 (2010), 1-11.

    [33]

    M. Hellerstein, M. B. Hanley, D. Cesar, S. Siler, C. Papageorgopoulos, E. Wieder, D. Schmidt, R. Hohl, R. Neese, D. Macallan, S. Deels and J. M. McCune, Directly measured kinetics of circulating t lymphocytes in normal and hiv-1-infected humans, Nature Medicine, 5 (1999), 83-89.

    [34]

    Alex Y. C. Huang, Paul Golumbek, Mojgan Ahmadzadeh, Elizabeth Jaffee, Drew Pardoll and Hyam Levitsky, Role of bone marrow-derived cells in presenting mhc class i-restricted tumor antigens, Science, SE: New Series, 264 (1994), 961-965.

    [35]

    RxList Inc, "Doxil Drug Description," July 2008.

    [36]

    C. A. Janeway, Jr., P. Travers, M. Walport and M. J. Shlomchik, "Immunobiology," Garland Science Publishing, 5th ed. edition, 2005.

    [37]

    H. Jonuleit and E. Schmitt, The regulatory T cell family: distinct subsets and their interrelations, Journal of Immunology, 171 (2003), 6323-6327.

    [38]

    H. Jonuleit, E. Schmitt, H. Kakirman, M. Stassen, J. Knop and A. H. Enk, Infectious tolerance: Human CD25$^+$4 regulatory T cells convey suppressor activity to conventional CD4$^+$ T helper cells, Journal of Experimental Medicine, 196 (2002), 255-260.

    [39]

    Denise Kirschner and John Carl Panetta, Modeling immunotherapy of the tumor - immune interaction, Journal of Mathematical Biology, 37 (1998), 235-252.

    [40]

    J. S. Ko et al, Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients, Clinical Cancer Research, 6 (2009), 2148-2157.

    [41]

    M. W. Konrad, G. Hemstreet, E. M. Hersh, P. W. A. Mansell, R. Mertelsmann, J. E. Kolitz and E. C. Bradley, Pharmacokinetics of recominbant interleukin 2 in humans, Cancer Research, 50 (1990), 2009-2017.

    [42]

    Natalie Kronik, Yuri Kogan, Moran Elishmereni, Karin Halevi-Tobias, Stanimir Vuk-Pavlovic and Zvia Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLoS ONE, 5 (2010), 1-8.

    [43]

    Vladimir A. Kuznetsov, Iliya A. Makalkin, Mark A. Taylor and Alan S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology, 56 (1994), 295-321.

    [44]

    P. P. Lee, C. Yee, P. A. Savage, L. Fong, D. Brockstedt, J. S. Weber, D. Johnson, S. Swetter, J. Thompson, P. D. Greenberg, M. Roederer and M. M. Davis, Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients, Nature Medicine, 5 (1999), 677-85.

    [45]

    K. Leon, K. Garcia, J. Carneiro and A. Lage, How regulatory CD25(+)CD4(+) T cells impinge on tumor immunobiology? On the existence of two alternative dynamical classes of tumors, Journal of Theoretical Biology, 247 (2007), 122-137.doi: 10.1016/j.jtbi.2007.01.029.

    [46]

    K. Leon, K. Garcia, J. Carneiro and A. Lage, How regulatory CD25(+)CD4(+) T cells impinge on tumor immunobiology: The differential response of tumors to therapies, The Journal of Immunology, 179 (2007), 5659-5668.

    [47]

    X. S. Li, X. Wu, P. J. Zhao, L. H. Huang, Y. Song, K. Gong, C. Shen, W. Yu, G. Song, Z. Zhao, Z. Zhang, Q. Zhang, G. Wang, Z. S. He, L. Q. Zhou and J. Jin, Efficacy and safety of sunitinib in the treatment of metastatic renal cell carcinoma, China Medical Journal, 124 (2011), 2920-2924.

    [48]

    N. H. E. Mabarrack, N. L. Turner and G. Mayrhofer, Recent thymic origin, differentiation, and turnover of regulatory T cells, Journal of Leukocyte Biology, 84 (2008), 1287-1297.

    [49]

    T. R. Malek and A. L. Bayer, Tolerance, not immunity, crucially depends on IL-2, Nature Reviews: Immunology, 4 (2004), 665-674.

    [50]

    N. J. Meropol, G. M. Barresi, T. A. Fehniger, J. Hitt, M. Franklin and M. A. Caligiuri, Evaluation of natural killer cell expansion and activation in vivo with daily subcutaneous low-dose interleukin-2 plus periodic intermediate-dose pulsing, Cancer Immunology, Immunotherapy, 46 (1998), 318-326.

    [51]

    R. J. Motzer, N. H. Bander and D. M. Nanus, Medical progress: renal-cell carcinoma, New England Journal of Medicine, 335 (1996), 865-875.

    [52]

    R. J. Motzer et al, Sunitinib in patients with metastatic renal cell carcinoma, Journal of the American Medical Association, 295 (2006), 2516-2524.

    [53]

    R. J. Motzer et al, Sunitinib versus interferon alfa in metastatic renal-cell carcinoma, New England Journal of Medicine, 356 (2007), 115-124.

    [54]

    M. Orditura, C. Romano, F. De Vita, G. Galizia, E. Lieto, S. Infusino, G. De Cataldis and G. Catalano, Behaviour of interleukin-2 serum levels in advanced non-small-cell lung cancer patients: relationship with response to therapy and survival, Cancer Immunology, Immunotherapy, 49 (2000), 530-536.

    [55]

    J. Ozao-Choy et al, The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies, Cancer Research, 69 (2009), 2514-2522.

    [56]

    Johan Paulsson, Models of stochastic gene expression, Physics of Life Reviews, 2 (2005), 157-175.

    [57]

    Novartis Pharmaceuticals, "Proleukin (aldesleukin), Pharmacology and Indications," January 2007.

    [58]

    M. J. Pittet et al, High frequencies of naive melan-a/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals, Journal of Experimental Medicine, 190 (1999), 705-715.

    [59]

    A. Raman, R. J. Colman, Y. Cheng, J. W. Kemnitz, S. T. Baum, R. Weindruch and D. A. Schoeller, Reference body composition in adult rhesus monkeys: Glucoregulatory and anthropometric indices, Journal of Gerontology Series A, 60 (2005), 1518-1524.

    [60]

    Yosef Refaeli, Luk Van Parijs, Cheryl A. London, Jurg Tschopp and Abul Abbas, Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis, Immunity, 8 (1998), 616-623.

    [61]

    Christiane Ruedl, Pascale Koebel, Martin Bachmann, Michael Hess and Klaus Karjalainen, Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes, Journal of Immunology, 165 (2000), 4910-4916.

    [62]

    S. A. Siddiqui, X. Frigola, S. Bonne-Annee, M. Mercader, S. M. Kuntz, A. E. Krambeck, S. Sengupta, H. Dong, J. C. Cheville, C. M. Lohse, C. J. Krco, W. S. Webster, B. C. Leibovich, M. L. Blute, K. L. Knutson and E. D. Kwon, Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma, Clinical Cancer Research, 13 (2007), 2075-2081.

    [63]

    Renee N. Salas, James H. Finke and Brian I. Rini, The intersection of sunitinib with the immunosuppressive microenvironment of renal cell carcinoma: implications for future therapeutics, Targeted Oncology, 2 (2007), 225-234.

    [64]

    Sandeep Sanga, John P Sinek, Hermann B Frieboes, Mauro Ferrari, John P Fruehauf and Vittorio Cristini, Mathematical modeling of cancer progression and response to chemotherapy, Expert Review of Anticancer Therapy, 6 (2006), 1361-1376.

    [65]

    D. E. Speiser et al, The activatory receptor 2B4 is expressed in vivo by human CD8+ effector alpha beta T cells, Journal of Immunology, 167 (2001), 6165-6170.

    [66]

    P. Trzonkowski, E. Szmit, J. Mysliwska, A. Dobyszuk and A. Msyliwski, CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction, Clinical Immunology, 112 (2004), 258-267.

    [67]

    D. F. Williamson, Descriptive epidemiology of body weight and weight change in u.s. adults, Annals of Internal Medicine, 119 (1993), 646-649.

    [68]

    A. Yu and T. R. Malek, Selective availability of IL-2 is a major determinant controlling the production of CD4+CD25+Foxp3+ T regulatory cells, Journal of Immunology, 177 (2006), 5115-5121.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(366) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return