Advanced Search
Article Contents
Article Contents

Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy

Abstract Related Papers Cited by
  • Due to its dependence on androgens, metastatic prostate cancer is typically treated with continuous androgen ablation. However, such therapy eventually fails due to the emergence of castration-resistance cells. It has been hypothesized that intermittent androgen ablation can delay the onset of this resistance. In this paper, we present a biochemically-motivated ordinary differential equation model of prostate cancer response to anti-androgen therapy, with the aim of predicting optimal treatment protocols based on individual patient characteristics. Conditions under which intermittent scheduling is preferable over continuous therapy are derived analytically for a variety of castration-resistant cell phenotypes. The model predicts that while a cure is not possible for androgen-independent castration-resistant cells, continuous therapy results in longer disease-free survival periods. However, for androgen-repressed castration-resistant cells, intermittent therapy can significantly delay the emergence of resistance, and in some cases induce tumor regression. Numerical simulations of the model lead to two interesting cases, where even though continuous therapy may be non-viable, an optimally chosen intermittent schedule leads to tumor regression, and where a sub-optimally chosen intermittent schedule can initially appear to result in a cure, it eventually leads to resistance emergence. These results demonstrate the model's potential impact in a clinical setting.
    Mathematics Subject Classification: Primary: 92C40, 92C50; Secondary: 37N25.


    \begin{equation} \\ \end{equation}
  • [1]

    D. B. Agus, C. Cordon-Cardo, W. Fox, M. Drobnjak, A. Koff, D. W. Golde and H. I. Scher, Prostate cancer cell cycle regulators: Response to androgen withdrawal and development of androgen independence, J. Natl. Cancer. Inst., 91 (1999), 1869-1876.doi: 10.1093/jnci/91.21.1869.


    G. L. Andriole, E. D. Crawford, R. L. Grubb III, S. S. Buys, D. Chia, T. R. Church, M. N. Fouad, E. P. Gelmann, P. A. Kvale, D. J. Reding, J. L. Weissfeld, L. A. Yokochi, B. O'Brien, J. D. Clapp, J. M. Rathmell, T. L. Riley, R. B. Hayes, B. S. Kramer, G. Izmirlian, A. B. Miller, P. F. Pinsky, P. C. Prorok, J. K. Gohagan and C. D. Berg, Mortality results from a randomized prostate-cancer screening trial, N. Engl. J. Med., 360 (2009), 1310-1319.doi: 10.1056/NEJMoa0810696.


    R. R. Berges, J. Vukanovic, J. I. Epstein, M. CarMichel, L. Cisek, D. E. Johnson, R. W. Veltri, P. C. Walsh and J. T. Isaacs, Implication of cell kinetic changes during the progression of human prostatic cancer, Clin. Cancer Res., 1 (1995), 473-480.


    G. Birkenmeier, F. Struck and R. Gebhardt, Clearance mechanism of prostate specific antigen and its complexes with alpha2-macroglobulin and alpha1-antichymotrypsin, J. Urol., 162 (1999), 897-901.doi: 10.1097/00005392-199909010-00086.


    M. L. Cher, G. S. Bova, D. H. Moore, E. J. Small, P. R. Carroll, S. S. Pin, J. I. Epstein, W. B. Isaacs and R. H. Jensen, Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping, Cancer Res., 56 (1996), 3091-3102.


    M. W. Dunn and M. W. Kazer, Prostate cancer overview, Semin. Oncol. Nurs., 27 (2011), 241-250.doi: 10.1016/j.soncn.2011.07.002.


    S. E. Eikenberry, J. D. Nagy and Y. Kuang, The evolutionary impact of androgen levels on prostate cancer in a multi-scale mathematical model, Biol. Direct, 5 (2010), 24-52.doi: 10.1186/1745-6150-5-24.


    B. J. Feldman and D. Feldman, The development of androgen-independent prostate cancer, Nat. Rev. Cancer, 1 (2001), 34-45.doi: 10.1038/35094009.


    D. Gillatt, Antiandrogen treatments in locally advanced prostate cancer: are they all the same?, J. Cancer Res. Clin. Oncol., 132 (2006), S17-S26.doi: 10.1007/s00432-006-0133-5.


    R. F. Gittes, Carcinoma of the prostate, N. Engl. J. Med., 324 (1991), 236-245.doi: 10.1056/NEJM199101243240406.


    M. Gleave, S. L. Goldenberg, N. Bruchovsky and P. Rennie, Intermittent androgen suppression for prostate cancer: Rationale and clinical experience, Prostate Cancer Prostatic Dis., 1 (1998), 289-296.doi: 10.1038/sj.pcan.4500260.


    S. L. Goldenberg, N. Bruchovsky, M. E. Gleave, L. D. Sullivan and K. Akakura, Intermittent androgen suppression in the treatment of prostate cancer: A preliminary report, Urology, 45 (1995), 839-844.doi: 10.1016/S0090-4295(99)80092-2.


    C. W. Gregory, R. T. Johnson, J. L. Mohler Jr, F. S. French and E. M. Wilson, Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen, Urology, 61 (2001), 2892-2898.


    M. A. Haider, T. H. van der Kwast, J. Tanguay, A. J. Evans, A. Hashmi, G. Lockwood and J. Trachtenberg, Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer, AJR Am J Roentgenol., 189 (2007), 323-328.doi: 10.2214/AJR.07.2211.


    C. A. Heinlein and C. Chang, Androgen receptor in prostate cancer, Endocr. Rev., 25 (2004), 276-308.doi: 10.1210/er.2002-0032.


    Y. Hirata, N. Bruchovsky and K. Aihara, Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer, J. Theor. Biol., 264 (2010), 517-527.doi: 10.1016/j.jtbi.2010.02.027.


    A. M. Ideta, G. Tanaka, T. Takeuchi and K. Aihara, A mathematical model of intermittent androgen suppression for prostate cancer, J. Nonlinear Sci., 18 (2008), 593-614.doi: 10.1007/s00332-008-9031-0.


    T. L. Jackson, A mathematical model of prostate tumor growth and androgen-independent relapse, Discrete Cont. Dyn.-B, 4 (2004), 187-201.doi: 10.3934/dcdsb.2004.4.187.


    T. L. Jackson, A mathematical investigation of the multiple pathways to recurrent prostate cancer: Comparison with experimental data, Neoplasia, 6 (2004), 697-704.doi: 10.1593/neo.04259.


    H. V. Jain, S. K. Clinton, A. Bhinder and A. Friedman, Mathematical modeling of prostate cancer progression in response to androgen ablation therapy, Proc. Natl. Acad. Sci. U. S. A., 108 (2011), 19701-19706.doi: 10.1073/pnas.1115750108.


    M. Marcelli, W. D. Tilley, C. M. Wilson, J. E. Griffin, J. D. Wilson and M. J. McPhaul, Definition of the human androgen receptor gene structure permits the identification of mutations that cause androgen resistance: premature termination of the receptor protein at amino acid residue 588 causes complete androgen resistance, Mol. Endocrinol., 4 (1990), 1105-1116.doi: 10.1210/mend-4-8-1105.


    H. C. Monro and E. A Gaffney, Modelling chemotherapy resistance in palliation and failed cure, J. Theor. Biol., 257 (2009), 292-302.doi: 10.1016/j.jtbi.2008.12.006.


    W. D. Nes, Y. O. Lukyanenko, Z. H. Jia, S. Quideau, W. N. Howald, T. K. Pratum, R. R. West and J. C. Hutson, Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis, Endocrinology, 141 (2000), 953-958.doi: 10.1210/en.141.3.953.


    T. Portz, Y. Kuang and J. D. Nagy, A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy, AIP Advances, 2 (2012), 011002.doi: 10.1063/1.3697848.


    L. K. Potter, M. G. Zager and H. A. Barton, Mathematical model for the androgenic regulation of the prostate in intact and castrated adult male rats, Am. J. Physiol. Endocrinol. Metab., 291 (2006), E952-E964.doi: 10.1152/ajpendo.00545.2005.


    E. M Wilson and F. S. French, Binding properties of androgen receptors. Evidence for identical receptors in rat testis, epididymis, and prostate, J. Biol. Chem., 51 (1976), 5620-5629.


    A. S. Wright, L. N. Thomas, R. C. Douglas, C. B. Lazier and R. S. Rittmaster, Relative potency of testosterone and dihydrotestosterone in preventing atrophy and apoptosis in the prostate of the castrated rat, J. Clin. Invest., 98 (1996), 255-263.doi: 10.1172/JCI119074.


    C. Y-F. Young, B. T. Montgomery, P. E. Andrews, S. Qiu, D. L. Bilhartz and D. J. Tindall, Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP, Cancer Res., 51 (1991), 3748-3752.


    K. Yörükoglu, S Aktas, C Güler, M. Sade and Z. Kirkali, Volume-weighted mean nuclear volume in renal cell carcinoma, Urology, 52 (1998), 44-47.


    H. Y. E. Zhau, S. Chang, B. Chen, Y. Wang, H. Zhang, C. Kao, Q. A. Sang, S. J. Pathak and L. W. K. Chung, Androgen-repressed phenotype in human prostate cancer, Proc. Natl. Acad. Sci. U. S. A., 93 (1996), 15152-15157.doi: 10.1073/pnas.93.26.15152.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(240) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint