# American Institute of Mathematical Sciences

January  2014, 19(1): 1-26. doi: 10.3934/dcdsb.2014.19.1

## A mathematical model of multistage hematopoietic cell lineages

 1 INRIA Rhône-Alpes, Dracula team, Université Lyon 1, Institut Camille Jordan, UMR 5208, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex, France 2 Departamento de Matemática Aplicada, ETSIT, Universidad de Valladolid, Pso. Belén 15, 47011 Valladolid, Spain 3 Université de Pau, Laboratoire de Mathématiques Appliquées, CNRS UMR 5142, Avenue de l'université, 64000 Pau, France 4 Laboratoire des systèmes dynamiques, Faculté de Mathématiques, USTHB, BP 32, El-Alia, Bab-Ezzouar, 16111 Alger, Algeria

Received  October 2012 Revised  July 2013 Published  December 2013

We investigate a mathematical model of blood cell production in the bone marrow (hematopoiesis). The model describes both the evolution of primitive hematopoietic stem cells and the maturation of these cells as they differentiate to form the three kinds of progenitors and mature blood cells (red blood cells, white cells and platelets). The three types of progenitors and mature cells are coupled to each other via their common origin in primitive hematopoietic stem cells compartment. The resulting system is composed by eleven age-structured partial differential equations. To analyze this model, we don't take into account cell age-dependence of coefficients, that prevents a usual reduction of the structured system to an unstructured delay differential system. We study the existence of stationary solutions: trivial, axial and positive steady states. Then we give conditions for the local asymptotic stability of the trivial steady state and by using a Lyapunov function, we obtain a sufficient condition for its global asymptotic stability. In some particular cases, we analyze the local asymptotic stability of the positive steady state by using the characteristic equation. Finally, by numerical simulations, we illustrate our results and we show that a change in the duration of cell cycle can cause oscillations.
Citation: Mostafa Adimy, Oscar Angulo, Catherine Marquet, Leila Sebaa. A mathematical model of multistage hematopoietic cell lineages. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 1-26. doi: 10.3934/dcdsb.2014.19.1
##### References:
 [1] J. W. Adamson, Regulation of red blood cell production, Am. J. Med., 101 (1996), S4-S6. doi: 10.1016/S0002-9343(96)00160-X. [2] M. Adimy, O. Angulo, F. Crauste and J. C. Lopez-Marcos, Numerical integration of a mathematical model of hematopoietic stem cell dynamics, Computers & Mathematics with Applications, 56 (2008), 594-560. doi: 10.1016/j.camwa.2008.01.003. [3] M. Adimy and F. Crauste, Global stability of a partial differential equation with distributed delay due to cellular replication, Nonlinear Analysis, 54 (2003), 1469-1491. doi: 10.1016/S0362-546X(03)00197-4. [4] M. Adimy and F. Crauste, Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay, Discrete and Continuous Dynamical Systems Series B, 8 (2007), 19-38. doi: 10.3934/dcdsb.2007.8.19. [5] M. Adimy and F. Crauste, Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulation, Mathematical and Computer Modelling, 49 (2009), 2128-2137. doi: 10.1016/j.mcm.2008.07.014. [6] M. Adimy, F. Crauste and A.El Abdllaoui, Asymptotic behavior of a discrete maturity structured system of hematopoietic stem cell dynamics with several delays, Journal of Mathematical Modelling and Natural Phenomena, 1 (2006), 1-19. doi: 10.1051/mmnp:2008001. [7] M. Adimy, F. Crauste and A. El Abdllaoui, Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia, Journal of Biological Systems, 16 (2008), 395-424. doi: 10.1142/S0218339008002599. [8] M. Adimy, F. Crauste, H. Hbid and R. Qesmi, Stability and hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math, 70 (2010), 1611-1633. doi: 10.1137/080742713. [9] M. Adimy, F. Crauste and C. Marquet, Asymptotic behavior and stability switch for a mature-immature model of cell differentiation, Nonlinear Analysis: Real World Applications, 11 (2010), 2913-2929. doi: 10.1016/j.nonrwa.2009.11.001. [10] M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65 (2005), 1328-1352. doi: 10.1137/040604698. [11] M. Adimy, F. Crauste and S. Ruan, Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics, Nonlinear Analysis: Real World Applications, 6 (2005), 651-670. doi: 10.1016/j.nonrwa.2004.12.010. [12] M. Adimy, F. Crauste and S. Ruan, Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases, Bulletin of Mathematical Biology, 68 (2006), 2321-2351. doi: 10.1007/s11538-006-9121-9. [13] M. Adimy, F. Crauste and S. Ruan, Periodic oscillations in leukopoiesis models with two delays, Journal of Theoretical Biology, 242 (2006), 288-299. doi: 10.1016/j.jtbi.2006.02.020. [14] M. Adimy and C. Marquet, On the stability of hematopoietic model with feedback control, Comptes Rendus Mathématique, 350 (2012), 173-176. doi: 10.1016/j.crma.2012.01.014. [15] M. Adimy and L. Pujo-Menjouet, Asymptotic behavior of a singular transport equation modelling cell division, Discret. Cont. Dyn. Sys. Ser. B, 3 (2003), 439-456 . doi: 10.3934/dcdsb.2003.3.439. [16] R. Apostu and M. C. Mackey, Understanding cyclical thrombocytopenia: A mathematical modeling approach, J. Theor. Biol., 251 (2008), 297-316. doi: 10.1016/j.jtbi.2007.11.029. [17] J. J. Batzel and F. Kappel, Time delay in physiological systems: Analyzing and modeling its impact, Math. Biosc., 234 (2011), 61-74. doi: 10.1016/j.mbs.2011.08.006. [18] A. Bauer, F. Tronche, O. Wessely, C. Kellendonk, H. M. Reichardt, P. Steinlein, G. Schutz and H. Beug, The glucocorticoid receptor is required for stress erythropoiesis, Genes. Dev., 13 (1999), 2996-3002. doi: 10.1101/gad.13.22.2996. [19] J. Bélair, M. C. Mackey and J. M. Mahaffy, Age-structured and two-delay models for erythropoiesis, Math. Biosci., 128 (1995), 317-346. [20] S. Bernard, J. Bélair and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence based on mathematical modeling, J. Theor. Biol., 223 (2003), 283-298. doi: 10.1016/S0022-5193(03)00090-0. [21] S. Bernard, J. Bélair and M. C. Mackey, Bifurcation in a white-blood-cell production model, C. R. Biologies, 327 (2004), 201-210. doi: 10.1016/j.crvi.2003.05.005. [22] F. J. Burns and I. F Tannock, On the existence of a $G_{0}$ phase in the cell cycle, Cell Proliferation, 3 (1970), 321-334. [23] C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis: 1. Periodic chronic myelogenous leukemia, J. Theor. Biol., 237 (2005), 117-132. doi: 10.1016/j.jtbi.2005.03.033. [24] C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis: 2. Cyclical neutropenia, J. Theor. Biol., 237 (2005), 133-146. doi: 10.1016/j.jtbi.2005.03.034. [25] J. Dyson, R. Villella-Bressan and G. F. Webb, A nonlinear age and maturity structured model of population dynamics, I: Basic theory, J. Math. Anal. Appl., 242 (2000), 93-104. doi: 10.1006/jmaa.1999.6656. [26] J. Dyson, R. Villella-Bressan and G. F. Webb, A nonlinear age and maturity structured model of population dynamics, II: Chaos, J. Math. Anal. Appl., 242 (2000), 255-270. doi: 10.1006/jmaa.1999.6657. [27] C. Foley and M. C. Mackey, Dynamic hematological disease: A review, J. Math. Biol., 58 (2009), 285-322. doi: 10.1007/s00285-008-0165-3. [28] P. Fortin and M. C. Mackey, Periodic chronic myelogenous leukaemia: Spectral analysis of blood cell counts and a etiological implications, Br. J. Haematol., 104 (1999), 336-345. [29] A. Fowler and M. C. Mackey, Relaxation oscillations in a class of delay differential equations, SIAM J. Appl. Math., 63 (2002), 299-323. doi: 10.1137/S0036139901393512. [30] M. E. Gurtin and R. C. MacCamy, Nonlinear age-dependent population dynamics, Arch. Rat. Mech. Anal., 54 (1974), 281-300. [31] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. [32] N. D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation, J. London Math. Soc., 25 (1950), 226-232. [33] C. Haurie, D. C. Dale and M. C. Mackey, Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood, 92 (1998), 2629-2640. [34] C. Haurie, R. Person, D. C. Dale and M. C. Mackey, Hematopoietic dynamics in grey collies, Exp. Hematol., 27 (1999), 1139-1148. doi: 10.1016/S0301-472X(99)00051-X. [35] C. Haurie, D. C. Dale and M. C. Mackey, Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic, and cyclical neutropenic patient before and during treatment with G-CSF, Exp. Hematol., 27 (1999), 401-409. doi: 10.1016/S0301-472X(98)00061-7. [36] K. Kaushansky, The molecular mechanisms that control thrombopoiesis, The Journal of Clinical Investigation, 115 (2005), 3339-3347. doi: 10.1172/JCI26674. [37] D. S. Krause, Regulation of hematopoietic stem cell fate, Oncogene, 21 (2002), 3262-3269. doi: 10.1038/sj.onc.1205316. [38] L. G. Lajtha, On DNA labeling in the study of the dynamics of bone marrow cell population, (Ed. F. Jr. Stohlman), The kinetics of Cellular Proliferation, Grune and Stratton, New York, 1959, 173-182. [39] J. Lei and M. C. Mackey, Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia, J. Theor. Biol., 270 (2011). doi: 10.1016/j.jtbi.2010.11.024. [40] M. C. Mackey, Unified hypothesis of the origin of aplastic anemia and periodic hematopoiesis, Blood, 51 (1978), 941-956. [41] M. C. Mackey, Periodic auto- immune hemolytic anemia: An induced dynamical disease, Bull. Math. Biol., 41 (1979), 829-834. doi: 10.1016/S0092-8240(79)80019-1. [42] M. C. Mackey and A. Rey, Transitions and kinematics of reaction-convection fronts in a cell population model, Physica D,, 80 (1995), 120-139. [43] M. C. Mackey and A. Rey, Propagation of population pulses and fronts in a cell replication problem: Non-locality and dependence on the initial function, Physica D, 86 (1995), 373-395. [44] J. M. Mahaffy, J. Bélair and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependant delay, J. Theor. Biol., 190 (1998), 135-146. doi: 10.1006/jtbi.1997.0537. [45] J. G. Milton and M. C. Mackey, Periodic haematological diseases: mystical entities of dynamical disorders? J. R. Coll. Phys., 23 (1989), 236-241. [46] L. Pujo-Menjouet, S. Bernard and M. C. Mackey, Long period oscillations in a $G_{0}$ model of hematopoietic stem cells, SIAM J. Appl. Dyn. Syst., 4 (2005), 312-332. doi: 10.1137/030600473. [47] L. Pujo-Menjouet and M. C. Mackey, Contribution to the study of periodic chronic myelogenous leukemia, Comptes Rendus Biologies, 327 (2004), 235-244. doi: 10.1016/j.crvi.2003.05.004. [48] M. Z. Ratajczak, J. Ratajczak, W. Marlicz et al., Recombinant human thrombopoietin (TPO) stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis, Br J. Haematol., 98 (1997), 8-17. doi: 10.1046/j.1365-2141.1997.1802997.x. [49] S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874. [50] M. Santillan, J. Bélair, J. M. Mahaffy and M. C. Mackey, Regulation of platelet production: The normal response to perturbation and cyclical platelet disease, J. Theor. Biol., 206 (2000), 585-603. doi: 10.1006/jtbi.2000.2149. [51] S. Tanimukai, T. Kimura, H. Sakabe et al., Recombinant human c-Mpl ligand (thrombopoietin) not only acts on megakaryocyte progenitors, but also on erythroid and multipotential progenitors in vitro, Experimental Hematology, 25 (1997), 1025-1033. [52] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and textbook in Pure Appl. Math., 89, Marcel Dekker, New York, 1985.

show all references

##### References:
 [1] J. W. Adamson, Regulation of red blood cell production, Am. J. Med., 101 (1996), S4-S6. doi: 10.1016/S0002-9343(96)00160-X. [2] M. Adimy, O. Angulo, F. Crauste and J. C. Lopez-Marcos, Numerical integration of a mathematical model of hematopoietic stem cell dynamics, Computers & Mathematics with Applications, 56 (2008), 594-560. doi: 10.1016/j.camwa.2008.01.003. [3] M. Adimy and F. Crauste, Global stability of a partial differential equation with distributed delay due to cellular replication, Nonlinear Analysis, 54 (2003), 1469-1491. doi: 10.1016/S0362-546X(03)00197-4. [4] M. Adimy and F. Crauste, Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay, Discrete and Continuous Dynamical Systems Series B, 8 (2007), 19-38. doi: 10.3934/dcdsb.2007.8.19. [5] M. Adimy and F. Crauste, Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulation, Mathematical and Computer Modelling, 49 (2009), 2128-2137. doi: 10.1016/j.mcm.2008.07.014. [6] M. Adimy, F. Crauste and A.El Abdllaoui, Asymptotic behavior of a discrete maturity structured system of hematopoietic stem cell dynamics with several delays, Journal of Mathematical Modelling and Natural Phenomena, 1 (2006), 1-19. doi: 10.1051/mmnp:2008001. [7] M. Adimy, F. Crauste and A. El Abdllaoui, Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia, Journal of Biological Systems, 16 (2008), 395-424. doi: 10.1142/S0218339008002599. [8] M. Adimy, F. Crauste, H. Hbid and R. Qesmi, Stability and hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math, 70 (2010), 1611-1633. doi: 10.1137/080742713. [9] M. Adimy, F. Crauste and C. Marquet, Asymptotic behavior and stability switch for a mature-immature model of cell differentiation, Nonlinear Analysis: Real World Applications, 11 (2010), 2913-2929. doi: 10.1016/j.nonrwa.2009.11.001. [10] M. Adimy, F. Crauste and S. Ruan, A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia, SIAM J. Appl. Math., 65 (2005), 1328-1352. doi: 10.1137/040604698. [11] M. Adimy, F. Crauste and S. Ruan, Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics, Nonlinear Analysis: Real World Applications, 6 (2005), 651-670. doi: 10.1016/j.nonrwa.2004.12.010. [12] M. Adimy, F. Crauste and S. Ruan, Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases, Bulletin of Mathematical Biology, 68 (2006), 2321-2351. doi: 10.1007/s11538-006-9121-9. [13] M. Adimy, F. Crauste and S. Ruan, Periodic oscillations in leukopoiesis models with two delays, Journal of Theoretical Biology, 242 (2006), 288-299. doi: 10.1016/j.jtbi.2006.02.020. [14] M. Adimy and C. Marquet, On the stability of hematopoietic model with feedback control, Comptes Rendus Mathématique, 350 (2012), 173-176. doi: 10.1016/j.crma.2012.01.014. [15] M. Adimy and L. Pujo-Menjouet, Asymptotic behavior of a singular transport equation modelling cell division, Discret. Cont. Dyn. Sys. Ser. B, 3 (2003), 439-456 . doi: 10.3934/dcdsb.2003.3.439. [16] R. Apostu and M. C. Mackey, Understanding cyclical thrombocytopenia: A mathematical modeling approach, J. Theor. Biol., 251 (2008), 297-316. doi: 10.1016/j.jtbi.2007.11.029. [17] J. J. Batzel and F. Kappel, Time delay in physiological systems: Analyzing and modeling its impact, Math. Biosc., 234 (2011), 61-74. doi: 10.1016/j.mbs.2011.08.006. [18] A. Bauer, F. Tronche, O. Wessely, C. Kellendonk, H. M. Reichardt, P. Steinlein, G. Schutz and H. Beug, The glucocorticoid receptor is required for stress erythropoiesis, Genes. Dev., 13 (1999), 2996-3002. doi: 10.1101/gad.13.22.2996. [19] J. Bélair, M. C. Mackey and J. M. Mahaffy, Age-structured and two-delay models for erythropoiesis, Math. Biosci., 128 (1995), 317-346. [20] S. Bernard, J. Bélair and M. C. Mackey, Oscillations in cyclical neutropenia: New evidence based on mathematical modeling, J. Theor. Biol., 223 (2003), 283-298. doi: 10.1016/S0022-5193(03)00090-0. [21] S. Bernard, J. Bélair and M. C. Mackey, Bifurcation in a white-blood-cell production model, C. R. Biologies, 327 (2004), 201-210. doi: 10.1016/j.crvi.2003.05.005. [22] F. J. Burns and I. F Tannock, On the existence of a $G_{0}$ phase in the cell cycle, Cell Proliferation, 3 (1970), 321-334. [23] C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis: 1. Periodic chronic myelogenous leukemia, J. Theor. Biol., 237 (2005), 117-132. doi: 10.1016/j.jtbi.2005.03.033. [24] C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis: 2. Cyclical neutropenia, J. Theor. Biol., 237 (2005), 133-146. doi: 10.1016/j.jtbi.2005.03.034. [25] J. Dyson, R. Villella-Bressan and G. F. Webb, A nonlinear age and maturity structured model of population dynamics, I: Basic theory, J. Math. Anal. Appl., 242 (2000), 93-104. doi: 10.1006/jmaa.1999.6656. [26] J. Dyson, R. Villella-Bressan and G. F. Webb, A nonlinear age and maturity structured model of population dynamics, II: Chaos, J. Math. Anal. Appl., 242 (2000), 255-270. doi: 10.1006/jmaa.1999.6657. [27] C. Foley and M. C. Mackey, Dynamic hematological disease: A review, J. Math. Biol., 58 (2009), 285-322. doi: 10.1007/s00285-008-0165-3. [28] P. Fortin and M. C. Mackey, Periodic chronic myelogenous leukaemia: Spectral analysis of blood cell counts and a etiological implications, Br. J. Haematol., 104 (1999), 336-345. [29] A. Fowler and M. C. Mackey, Relaxation oscillations in a class of delay differential equations, SIAM J. Appl. Math., 63 (2002), 299-323. doi: 10.1137/S0036139901393512. [30] M. E. Gurtin and R. C. MacCamy, Nonlinear age-dependent population dynamics, Arch. Rat. Mech. Anal., 54 (1974), 281-300. [31] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. [32] N. D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation, J. London Math. Soc., 25 (1950), 226-232. [33] C. Haurie, D. C. Dale and M. C. Mackey, Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood, 92 (1998), 2629-2640. [34] C. Haurie, R. Person, D. C. Dale and M. C. Mackey, Hematopoietic dynamics in grey collies, Exp. Hematol., 27 (1999), 1139-1148. doi: 10.1016/S0301-472X(99)00051-X. [35] C. Haurie, D. C. Dale and M. C. Mackey, Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic, and cyclical neutropenic patient before and during treatment with G-CSF, Exp. Hematol., 27 (1999), 401-409. doi: 10.1016/S0301-472X(98)00061-7. [36] K. Kaushansky, The molecular mechanisms that control thrombopoiesis, The Journal of Clinical Investigation, 115 (2005), 3339-3347. doi: 10.1172/JCI26674. [37] D. S. Krause, Regulation of hematopoietic stem cell fate, Oncogene, 21 (2002), 3262-3269. doi: 10.1038/sj.onc.1205316. [38] L. G. Lajtha, On DNA labeling in the study of the dynamics of bone marrow cell population, (Ed. F. Jr. Stohlman), The kinetics of Cellular Proliferation, Grune and Stratton, New York, 1959, 173-182. [39] J. Lei and M. C. Mackey, Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia, J. Theor. Biol., 270 (2011). doi: 10.1016/j.jtbi.2010.11.024. [40] M. C. Mackey, Unified hypothesis of the origin of aplastic anemia and periodic hematopoiesis, Blood, 51 (1978), 941-956. [41] M. C. Mackey, Periodic auto- immune hemolytic anemia: An induced dynamical disease, Bull. Math. Biol., 41 (1979), 829-834. doi: 10.1016/S0092-8240(79)80019-1. [42] M. C. Mackey and A. Rey, Transitions and kinematics of reaction-convection fronts in a cell population model, Physica D,, 80 (1995), 120-139. [43] M. C. Mackey and A. Rey, Propagation of population pulses and fronts in a cell replication problem: Non-locality and dependence on the initial function, Physica D, 86 (1995), 373-395. [44] J. M. Mahaffy, J. Bélair and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependant delay, J. Theor. Biol., 190 (1998), 135-146. doi: 10.1006/jtbi.1997.0537. [45] J. G. Milton and M. C. Mackey, Periodic haematological diseases: mystical entities of dynamical disorders? J. R. Coll. Phys., 23 (1989), 236-241. [46] L. Pujo-Menjouet, S. Bernard and M. C. Mackey, Long period oscillations in a $G_{0}$ model of hematopoietic stem cells, SIAM J. Appl. Dyn. Syst., 4 (2005), 312-332. doi: 10.1137/030600473. [47] L. Pujo-Menjouet and M. C. Mackey, Contribution to the study of periodic chronic myelogenous leukemia, Comptes Rendus Biologies, 327 (2004), 235-244. doi: 10.1016/j.crvi.2003.05.004. [48] M. Z. Ratajczak, J. Ratajczak, W. Marlicz et al., Recombinant human thrombopoietin (TPO) stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis, Br J. Haematol., 98 (1997), 8-17. doi: 10.1046/j.1365-2141.1997.1802997.x. [49] S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863-874. [50] M. Santillan, J. Bélair, J. M. Mahaffy and M. C. Mackey, Regulation of platelet production: The normal response to perturbation and cyclical platelet disease, J. Theor. Biol., 206 (2000), 585-603. doi: 10.1006/jtbi.2000.2149. [51] S. Tanimukai, T. Kimura, H. Sakabe et al., Recombinant human c-Mpl ligand (thrombopoietin) not only acts on megakaryocyte progenitors, but also on erythroid and multipotential progenitors in vitro, Experimental Hematology, 25 (1997), 1025-1033. [52] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and textbook in Pure Appl. Math., 89, Marcel Dekker, New York, 1985.
 [1] Mostafa Adimy, Abdennasser Chekroun, Tarik-Mohamed Touaoula. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2765-2791. doi: 10.3934/dcdsb.2015.20.2765 [2] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641 [3] Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 [4] Yuan Yuan, Xianlong Fu. Mathematical analysis of an age-structured HIV model with intracellular delay. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2077-2106. doi: 10.3934/dcdsb.2021123 [5] Hassan Tahir, Asaf Khan, Anwarud Din, Amir Khan, Gul Zaman. Optimal control strategy for an age-structured SIR endemic model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2535-2555. doi: 10.3934/dcdss.2021054 [6] Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 [7] Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264 [8] Piotr Gwiazda, Karolina Kropielnicka, Anna Marciniak-Czochra. The Escalator Boxcar Train method for a system of age-structured equations. Networks and Heterogeneous Media, 2016, 11 (1) : 123-143. doi: 10.3934/nhm.2016.11.123 [9] Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011 [10] Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 [11] Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052 [12] Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295 [13] Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 [14] Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131 [15] Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 [16] Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727 [17] Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338 [18] Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291 [19] Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879 [20] Ryszard Rudnicki, Radosław Wieczorek. On a nonlinear age-structured model of semelparous species. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2641-2656. doi: 10.3934/dcdsb.2014.19.2641

2020 Impact Factor: 1.327