• Previous Article
    Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise
  • DCDS-B Home
  • This Issue
  • Next Article
    Backward bifurcation and global stability in an epidemic model with treatment and vaccination
June  2014, 19(4): 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

On the stochastic beam equation driven by a Non-Gaussian Lévy process

1. 

Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, China

2. 

Department of Mathematics, Northwest University, Xi An 710069, China

Received  June 2012 Revised  November 2013 Published  April 2014

A damped stochastic beam equation driven by a Non-Gaussian Lévy process is studied. Under appropriate conditions, the existence theorem for a unique global weak solution is given. Moreover, we also show the existence of a unique invariant measure associated with the transition semigroup under mild conditions.
Citation: Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027
References:
[1]

D. Applebaum, Lévy Process and Stochastic Calculus,, 2nd edition, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

V. Barbu and G. D. Prato, The stochastic nonlinear damped wave equation,, Appl. Math. Optim., 46 (2002), 125.  doi: 10.1007/s00245-002-0744-4.  Google Scholar

[3]

V. Barbu, G. D. Prato and L. Tubaro, Stochastic wave equations with dissipative damping,, Stochastic Process. Appl., 117 (2007), 1001.  doi: 10.1016/j.spa.2006.11.006.  Google Scholar

[4]

L. J. Bo, K. H. Shi and Y. J. Wang, ON a stochastic wave equation driven by a non-Gaussian Lévy process,, J. Theor. Probab, 23 (2010), 328.  doi: 10.1007/s10959-009-0228-4.  Google Scholar

[5]

L. J. Bo, D. Tang and Y. J. Wang, Explosive solutions of stochastic wave equations with damping on $\mathbbR^d$,, J. Differential Equations, 244 (2008), 170.  doi: 10.1016/j.jde.2007.10.016.  Google Scholar

[6]

Z. Brzeźniak, B. Maslowski and J. Seidler, Nonlinear stochstic wave equations: blow-up of second moments in $L^2$-norm,, Probab. Theory Related Fields, 132 (2005), 119.  doi: 10.1007/s00440-004-0392-5.  Google Scholar

[7]

Z. Brzeźniak and J. H. Zhu, Stochastic nonlinear beam equations driven by compensated Poisson random measures,, preprint, ().   Google Scholar

[8]

T. Caraballo, P. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation,, Appl Math Optim, 50 (2004), 183.  doi: 10.1007/s00245-004-0802-1.  Google Scholar

[9]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation,, Commun. Contemp. Math., 6 (2004), 705.  doi: 10.1142/S0219199704001483.  Google Scholar

[10]

P. L. Chow, Stochastic wave equations with polynomial nonlinearity,, Ann. Appl. Probab., 12 (2002), 1.  doi: 10.1214/aoap/1015961168.  Google Scholar

[11]

P. L. Chow, Asymptotics of solutions to semilinear stochastic wave equations,, Ann. Appl. Probab., 16 (2006), 475.  doi: 10.1214/105051606000000141.  Google Scholar

[12]

P. L. Chow, Asymptotic solutions of a nonlinear stochastic beam equation,, Discrete Contin. Dyn. Syst. Ser. B., 6 (2006), 735.  doi: 10.3934/dcdsb.2006.6.735.  Google Scholar

[13]

P. L. Chow, Nonlinear stochstic wave equations: blow-up of second moments in $L^2$-norm,, Ann. Appl. Probab., 19 (2009), 2039.  doi: 10.1214/09-AAP602.  Google Scholar

[14]

P. L. Chow and J. L. Menaldi, Stochastic PDE for nonlinear vibration of elastic panels,, Differential Integral Equations, 12 (1999), 419.   Google Scholar

[15]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, University Lectures in Contemporary Mathematics, (1999).   Google Scholar

[16]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dynam. Differential Equations., 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[17]

G. Da Prato and J. Zabczyk,, Stochastic Equations in Infinite Dimensions,, Cambridge Univ. Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[18]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam,, J. Math. Anal. Appl., 29 (1970), 443.  doi: 10.1016/0022-247X(70)90094-6.  Google Scholar

[19]

J. G. Eisley, Nonlinear vibration of beams and rectangular plates,, Z. Angew. Math. Phys., 15 (1964), 167.  doi: 10.1007/BF01602658.  Google Scholar

[20]

W. E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation,, SIAM J. Math. Anal., 13 (1982), 739.  doi: 10.1137/0513050.  Google Scholar

[21]

P. Holmes and J. Marsden, A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam,, Arch. Ration. Mech. Anal., 76 (1981), 135.  doi: 10.1007/BF00251249.  Google Scholar

[22]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,, North-Holland Publishing Co., (1981).   Google Scholar

[23]

J. U. Kim, On the stochastic wave equation with nonlinear damping,, Appl. Math. Optim., 58 (2008), 29.  doi: 10.1007/s00245-007-9029-2.  Google Scholar

[24]

S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation,, J. Differential Equations, 135 (1997), 229.  doi: 10.1006/jdeq.1996.3231.  Google Scholar

[25]

F. Liang, Explosive solutions of stochastic nonlinear beam equations with damping,, accepted by J. Math. Anal. Appl., ().   Google Scholar

[26]

A. Millet and P. L. Morien, On a nonlinear stochastic wave equation in the plane: Existence and uniqueness of the solution,, Ann. Appl. Probab., 11 (2001), 922.  doi: 10.1214/aoap/1015345353.  Google Scholar

[27]

S. Peszat and J. Zabczyk, Stochastic heat and wave equations driven by an impulsive noise,, In Da Prato, (2006), 229.  doi: 10.1201/9781420028720.ch19.  Google Scholar

[28]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach,, Encyclopedia of Mathematics and Its Applications, (2007).  doi: 10.1017/CBO9780511721373.  Google Scholar

[29]

E. L. Reiss and B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column,, Quart. Appl. Math., 29 (1971), 245.   Google Scholar

[30]

K. Sato, Lévy Process and Infinitely Divisible Distributions,, Cambridge University Press, (1999).   Google Scholar

[31]

L. Soraya and T. Nasser-eddine, Blow-up of solutions for a nonlinear beam equation with fractional feedback,, Nonlinear Anal., 74 (2011), 1402.  doi: 10.1016/j.na.2010.10.012.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, 2nd edn. Springer, (1997).   Google Scholar

[33]

A. Unai, Abstract nonlinear beam equations,, SUT J. Math., 29 (1993), 323.   Google Scholar

[34]

C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping,, Ann. Fac. Sci. ToulouseMath., 8 (1999), 173.  doi: 10.5802/afst.928.  Google Scholar

[35]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars,, J. Appl. Mech., 17 (1950), 35.   Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B, Nonlinear Monotone Operators,, Springer, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

References:
[1]

D. Applebaum, Lévy Process and Stochastic Calculus,, 2nd edition, (2009).  doi: 10.1017/CBO9780511809781.  Google Scholar

[2]

V. Barbu and G. D. Prato, The stochastic nonlinear damped wave equation,, Appl. Math. Optim., 46 (2002), 125.  doi: 10.1007/s00245-002-0744-4.  Google Scholar

[3]

V. Barbu, G. D. Prato and L. Tubaro, Stochastic wave equations with dissipative damping,, Stochastic Process. Appl., 117 (2007), 1001.  doi: 10.1016/j.spa.2006.11.006.  Google Scholar

[4]

L. J. Bo, K. H. Shi and Y. J. Wang, ON a stochastic wave equation driven by a non-Gaussian Lévy process,, J. Theor. Probab, 23 (2010), 328.  doi: 10.1007/s10959-009-0228-4.  Google Scholar

[5]

L. J. Bo, D. Tang and Y. J. Wang, Explosive solutions of stochastic wave equations with damping on $\mathbbR^d$,, J. Differential Equations, 244 (2008), 170.  doi: 10.1016/j.jde.2007.10.016.  Google Scholar

[6]

Z. Brzeźniak, B. Maslowski and J. Seidler, Nonlinear stochstic wave equations: blow-up of second moments in $L^2$-norm,, Probab. Theory Related Fields, 132 (2005), 119.  doi: 10.1007/s00440-004-0392-5.  Google Scholar

[7]

Z. Brzeźniak and J. H. Zhu, Stochastic nonlinear beam equations driven by compensated Poisson random measures,, preprint, ().   Google Scholar

[8]

T. Caraballo, P. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation,, Appl Math Optim, 50 (2004), 183.  doi: 10.1007/s00245-004-0802-1.  Google Scholar

[9]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation,, Commun. Contemp. Math., 6 (2004), 705.  doi: 10.1142/S0219199704001483.  Google Scholar

[10]

P. L. Chow, Stochastic wave equations with polynomial nonlinearity,, Ann. Appl. Probab., 12 (2002), 1.  doi: 10.1214/aoap/1015961168.  Google Scholar

[11]

P. L. Chow, Asymptotics of solutions to semilinear stochastic wave equations,, Ann. Appl. Probab., 16 (2006), 475.  doi: 10.1214/105051606000000141.  Google Scholar

[12]

P. L. Chow, Asymptotic solutions of a nonlinear stochastic beam equation,, Discrete Contin. Dyn. Syst. Ser. B., 6 (2006), 735.  doi: 10.3934/dcdsb.2006.6.735.  Google Scholar

[13]

P. L. Chow, Nonlinear stochstic wave equations: blow-up of second moments in $L^2$-norm,, Ann. Appl. Probab., 19 (2009), 2039.  doi: 10.1214/09-AAP602.  Google Scholar

[14]

P. L. Chow and J. L. Menaldi, Stochastic PDE for nonlinear vibration of elastic panels,, Differential Integral Equations, 12 (1999), 419.   Google Scholar

[15]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, University Lectures in Contemporary Mathematics, (1999).   Google Scholar

[16]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dynam. Differential Equations., 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[17]

G. Da Prato and J. Zabczyk,, Stochastic Equations in Infinite Dimensions,, Cambridge Univ. Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[18]

R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam,, J. Math. Anal. Appl., 29 (1970), 443.  doi: 10.1016/0022-247X(70)90094-6.  Google Scholar

[19]

J. G. Eisley, Nonlinear vibration of beams and rectangular plates,, Z. Angew. Math. Phys., 15 (1964), 167.  doi: 10.1007/BF01602658.  Google Scholar

[20]

W. E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation,, SIAM J. Math. Anal., 13 (1982), 739.  doi: 10.1137/0513050.  Google Scholar

[21]

P. Holmes and J. Marsden, A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam,, Arch. Ration. Mech. Anal., 76 (1981), 135.  doi: 10.1007/BF00251249.  Google Scholar

[22]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,, North-Holland Publishing Co., (1981).   Google Scholar

[23]

J. U. Kim, On the stochastic wave equation with nonlinear damping,, Appl. Math. Optim., 58 (2008), 29.  doi: 10.1007/s00245-007-9029-2.  Google Scholar

[24]

S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation,, J. Differential Equations, 135 (1997), 229.  doi: 10.1006/jdeq.1996.3231.  Google Scholar

[25]

F. Liang, Explosive solutions of stochastic nonlinear beam equations with damping,, accepted by J. Math. Anal. Appl., ().   Google Scholar

[26]

A. Millet and P. L. Morien, On a nonlinear stochastic wave equation in the plane: Existence and uniqueness of the solution,, Ann. Appl. Probab., 11 (2001), 922.  doi: 10.1214/aoap/1015345353.  Google Scholar

[27]

S. Peszat and J. Zabczyk, Stochastic heat and wave equations driven by an impulsive noise,, In Da Prato, (2006), 229.  doi: 10.1201/9781420028720.ch19.  Google Scholar

[28]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach,, Encyclopedia of Mathematics and Its Applications, (2007).  doi: 10.1017/CBO9780511721373.  Google Scholar

[29]

E. L. Reiss and B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column,, Quart. Appl. Math., 29 (1971), 245.   Google Scholar

[30]

K. Sato, Lévy Process and Infinitely Divisible Distributions,, Cambridge University Press, (1999).   Google Scholar

[31]

L. Soraya and T. Nasser-eddine, Blow-up of solutions for a nonlinear beam equation with fractional feedback,, Nonlinear Anal., 74 (2011), 1402.  doi: 10.1016/j.na.2010.10.012.  Google Scholar

[32]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, 2nd edn. Springer, (1997).   Google Scholar

[33]

A. Unai, Abstract nonlinear beam equations,, SUT J. Math., 29 (1993), 323.   Google Scholar

[34]

C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping,, Ann. Fac. Sci. ToulouseMath., 8 (1999), 173.  doi: 10.5802/afst.928.  Google Scholar

[35]

S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars,, J. Appl. Mech., 17 (1950), 35.   Google Scholar

[36]

E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B, Nonlinear Monotone Operators,, Springer, (1990).  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

[1]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[15]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[16]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[17]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[18]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[19]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[20]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]