-
Previous Article
Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise
- DCDS-B Home
- This Issue
-
Next Article
Backward bifurcation and global stability in an epidemic model with treatment and vaccination
On the stochastic beam equation driven by a Non-Gaussian Lévy process
1. | Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, China |
2. | Department of Mathematics, Northwest University, Xi An 710069, China |
References:
[1] |
D. Applebaum, Lévy Process and Stochastic Calculus,, 2nd edition, (2009).
doi: 10.1017/CBO9780511809781. |
[2] |
V. Barbu and G. D. Prato, The stochastic nonlinear damped wave equation,, Appl. Math. Optim., 46 (2002), 125.
doi: 10.1007/s00245-002-0744-4. |
[3] |
V. Barbu, G. D. Prato and L. Tubaro, Stochastic wave equations with dissipative damping,, Stochastic Process. Appl., 117 (2007), 1001.
doi: 10.1016/j.spa.2006.11.006. |
[4] |
L. J. Bo, K. H. Shi and Y. J. Wang, ON a stochastic wave equation driven by a non-Gaussian Lévy process,, J. Theor. Probab, 23 (2010), 328.
doi: 10.1007/s10959-009-0228-4. |
[5] |
L. J. Bo, D. Tang and Y. J. Wang, Explosive solutions of stochastic wave equations with damping on $\mathbbR^d$,, J. Differential Equations, 244 (2008), 170.
doi: 10.1016/j.jde.2007.10.016. |
[6] |
Z. Brzeźniak, B. Maslowski and J. Seidler, Nonlinear stochstic wave equations: blow-up of second moments in $L^2$-norm,, Probab. Theory Related Fields, 132 (2005), 119.
doi: 10.1007/s00440-004-0392-5. |
[7] |
Z. Brzeźniak and J. H. Zhu, Stochastic nonlinear beam equations driven by compensated Poisson random measures,, preprint, (). Google Scholar |
[8] |
T. Caraballo, P. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation,, Appl Math Optim, 50 (2004), 183.
doi: 10.1007/s00245-004-0802-1. |
[9] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation,, Commun. Contemp. Math., 6 (2004), 705.
doi: 10.1142/S0219199704001483. |
[10] |
P. L. Chow, Stochastic wave equations with polynomial nonlinearity,, Ann. Appl. Probab., 12 (2002), 1.
doi: 10.1214/aoap/1015961168. |
[11] |
P. L. Chow, Asymptotics of solutions to semilinear stochastic wave equations,, Ann. Appl. Probab., 16 (2006), 475.
doi: 10.1214/105051606000000141. |
[12] |
P. L. Chow, Asymptotic solutions of a nonlinear stochastic beam equation,, Discrete Contin. Dyn. Syst. Ser. B., 6 (2006), 735.
doi: 10.3934/dcdsb.2006.6.735. |
[13] |
P. L. Chow, Nonlinear stochstic wave equations: blow-up of second moments in $L^2$-norm,, Ann. Appl. Probab., 19 (2009), 2039.
doi: 10.1214/09-AAP602. |
[14] |
P. L. Chow and J. L. Menaldi, Stochastic PDE for nonlinear vibration of elastic panels,, Differential Integral Equations, 12 (1999), 419.
|
[15] |
I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, University Lectures in Contemporary Mathematics, (1999).
|
[16] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dynam. Differential Equations., 9 (1997), 307.
doi: 10.1007/BF02219225. |
[17] |
G. Da Prato and J. Zabczyk,, Stochastic Equations in Infinite Dimensions,, Cambridge Univ. Press, (1992).
doi: 10.1017/CBO9780511666223. |
[18] |
R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam,, J. Math. Anal. Appl., 29 (1970), 443.
doi: 10.1016/0022-247X(70)90094-6. |
[19] |
J. G. Eisley, Nonlinear vibration of beams and rectangular plates,, Z. Angew. Math. Phys., 15 (1964), 167.
doi: 10.1007/BF01602658. |
[20] |
W. E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation,, SIAM J. Math. Anal., 13 (1982), 739.
doi: 10.1137/0513050. |
[21] |
P. Holmes and J. Marsden, A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam,, Arch. Ration. Mech. Anal., 76 (1981), 135.
doi: 10.1007/BF00251249. |
[22] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,, North-Holland Publishing Co., (1981).
|
[23] |
J. U. Kim, On the stochastic wave equation with nonlinear damping,, Appl. Math. Optim., 58 (2008), 29.
doi: 10.1007/s00245-007-9029-2. |
[24] |
S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation,, J. Differential Equations, 135 (1997), 229.
doi: 10.1006/jdeq.1996.3231. |
[25] |
F. Liang, Explosive solutions of stochastic nonlinear beam equations with damping,, accepted by J. Math. Anal. Appl., (). Google Scholar |
[26] |
A. Millet and P. L. Morien, On a nonlinear stochastic wave equation in the plane: Existence and uniqueness of the solution,, Ann. Appl. Probab., 11 (2001), 922.
doi: 10.1214/aoap/1015345353. |
[27] |
S. Peszat and J. Zabczyk, Stochastic heat and wave equations driven by an impulsive noise,, In Da Prato, (2006), 229.
doi: 10.1201/9781420028720.ch19. |
[28] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach,, Encyclopedia of Mathematics and Its Applications, (2007).
doi: 10.1017/CBO9780511721373. |
[29] |
E. L. Reiss and B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column,, Quart. Appl. Math., 29 (1971), 245.
|
[30] |
K. Sato, Lévy Process and Infinitely Divisible Distributions,, Cambridge University Press, (1999).
|
[31] |
L. Soraya and T. Nasser-eddine, Blow-up of solutions for a nonlinear beam equation with fractional feedback,, Nonlinear Anal., 74 (2011), 1402.
doi: 10.1016/j.na.2010.10.012. |
[32] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, 2nd edn. Springer, (1997).
|
[33] |
A. Unai, Abstract nonlinear beam equations,, SUT J. Math., 29 (1993), 323.
|
[34] |
C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping,, Ann. Fac. Sci. ToulouseMath., 8 (1999), 173.
doi: 10.5802/afst.928. |
[35] |
S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars,, J. Appl. Mech., 17 (1950), 35.
|
[36] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B, Nonlinear Monotone Operators,, Springer, (1990).
doi: 10.1007/978-1-4612-0985-0. |
show all references
References:
[1] |
D. Applebaum, Lévy Process and Stochastic Calculus,, 2nd edition, (2009).
doi: 10.1017/CBO9780511809781. |
[2] |
V. Barbu and G. D. Prato, The stochastic nonlinear damped wave equation,, Appl. Math. Optim., 46 (2002), 125.
doi: 10.1007/s00245-002-0744-4. |
[3] |
V. Barbu, G. D. Prato and L. Tubaro, Stochastic wave equations with dissipative damping,, Stochastic Process. Appl., 117 (2007), 1001.
doi: 10.1016/j.spa.2006.11.006. |
[4] |
L. J. Bo, K. H. Shi and Y. J. Wang, ON a stochastic wave equation driven by a non-Gaussian Lévy process,, J. Theor. Probab, 23 (2010), 328.
doi: 10.1007/s10959-009-0228-4. |
[5] |
L. J. Bo, D. Tang and Y. J. Wang, Explosive solutions of stochastic wave equations with damping on $\mathbbR^d$,, J. Differential Equations, 244 (2008), 170.
doi: 10.1016/j.jde.2007.10.016. |
[6] |
Z. Brzeźniak, B. Maslowski and J. Seidler, Nonlinear stochstic wave equations: blow-up of second moments in $L^2$-norm,, Probab. Theory Related Fields, 132 (2005), 119.
doi: 10.1007/s00440-004-0392-5. |
[7] |
Z. Brzeźniak and J. H. Zhu, Stochastic nonlinear beam equations driven by compensated Poisson random measures,, preprint, (). Google Scholar |
[8] |
T. Caraballo, P. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation,, Appl Math Optim, 50 (2004), 183.
doi: 10.1007/s00245-004-0802-1. |
[9] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation,, Commun. Contemp. Math., 6 (2004), 705.
doi: 10.1142/S0219199704001483. |
[10] |
P. L. Chow, Stochastic wave equations with polynomial nonlinearity,, Ann. Appl. Probab., 12 (2002), 1.
doi: 10.1214/aoap/1015961168. |
[11] |
P. L. Chow, Asymptotics of solutions to semilinear stochastic wave equations,, Ann. Appl. Probab., 16 (2006), 475.
doi: 10.1214/105051606000000141. |
[12] |
P. L. Chow, Asymptotic solutions of a nonlinear stochastic beam equation,, Discrete Contin. Dyn. Syst. Ser. B., 6 (2006), 735.
doi: 10.3934/dcdsb.2006.6.735. |
[13] |
P. L. Chow, Nonlinear stochstic wave equations: blow-up of second moments in $L^2$-norm,, Ann. Appl. Probab., 19 (2009), 2039.
doi: 10.1214/09-AAP602. |
[14] |
P. L. Chow and J. L. Menaldi, Stochastic PDE for nonlinear vibration of elastic panels,, Differential Integral Equations, 12 (1999), 419.
|
[15] |
I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems,, University Lectures in Contemporary Mathematics, (1999).
|
[16] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dynam. Differential Equations., 9 (1997), 307.
doi: 10.1007/BF02219225. |
[17] |
G. Da Prato and J. Zabczyk,, Stochastic Equations in Infinite Dimensions,, Cambridge Univ. Press, (1992).
doi: 10.1017/CBO9780511666223. |
[18] |
R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam,, J. Math. Anal. Appl., 29 (1970), 443.
doi: 10.1016/0022-247X(70)90094-6. |
[19] |
J. G. Eisley, Nonlinear vibration of beams and rectangular plates,, Z. Angew. Math. Phys., 15 (1964), 167.
doi: 10.1007/BF01602658. |
[20] |
W. E. Fitzgibbon, Global existence and boundedness of solutions to the extensible beam equation,, SIAM J. Math. Anal., 13 (1982), 739.
doi: 10.1137/0513050. |
[21] |
P. Holmes and J. Marsden, A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam,, Arch. Ration. Mech. Anal., 76 (1981), 135.
doi: 10.1007/BF00251249. |
[22] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,, North-Holland Publishing Co., (1981).
|
[23] |
J. U. Kim, On the stochastic wave equation with nonlinear damping,, Appl. Math. Optim., 58 (2008), 29.
doi: 10.1007/s00245-007-9029-2. |
[24] |
S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation,, J. Differential Equations, 135 (1997), 229.
doi: 10.1006/jdeq.1996.3231. |
[25] |
F. Liang, Explosive solutions of stochastic nonlinear beam equations with damping,, accepted by J. Math. Anal. Appl., (). Google Scholar |
[26] |
A. Millet and P. L. Morien, On a nonlinear stochastic wave equation in the plane: Existence and uniqueness of the solution,, Ann. Appl. Probab., 11 (2001), 922.
doi: 10.1214/aoap/1015345353. |
[27] |
S. Peszat and J. Zabczyk, Stochastic heat and wave equations driven by an impulsive noise,, In Da Prato, (2006), 229.
doi: 10.1201/9781420028720.ch19. |
[28] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise. An Evolution Equation Approach,, Encyclopedia of Mathematics and Its Applications, (2007).
doi: 10.1017/CBO9780511721373. |
[29] |
E. L. Reiss and B. J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column,, Quart. Appl. Math., 29 (1971), 245.
|
[30] |
K. Sato, Lévy Process and Infinitely Divisible Distributions,, Cambridge University Press, (1999).
|
[31] |
L. Soraya and T. Nasser-eddine, Blow-up of solutions for a nonlinear beam equation with fractional feedback,, Nonlinear Anal., 74 (2011), 1402.
doi: 10.1016/j.na.2010.10.012. |
[32] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, 2nd edn. Springer, (1997).
|
[33] |
A. Unai, Abstract nonlinear beam equations,, SUT J. Math., 29 (1993), 323.
|
[34] |
C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping,, Ann. Fac. Sci. ToulouseMath., 8 (1999), 173.
doi: 10.5802/afst.928. |
[35] |
S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars,, J. Appl. Mech., 17 (1950), 35.
|
[36] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B, Nonlinear Monotone Operators,, Springer, (1990).
doi: 10.1007/978-1-4612-0985-0. |
[1] |
Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic & Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53 |
[2] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[3] |
Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140 |
[4] |
Yongxia Zhao, Rongming Wang, Chuancun Yin. Optimal dividends and capital injections for a spectrally positive Lévy process. Journal of Industrial & Management Optimization, 2017, 13 (1) : 1-21. doi: 10.3934/jimo.2016001 |
[5] |
Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057 |
[6] |
Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250 |
[7] |
Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081 |
[8] |
Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221 |
[9] |
Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331 |
[10] |
Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241 |
[11] |
Pao-Liu Chow. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 735-749. doi: 10.3934/dcdsb.2006.6.735 |
[12] |
Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022 |
[13] |
Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019230 |
[14] |
Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010 |
[15] |
András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43 |
[16] |
Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080 |
[17] |
Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355 |
[18] |
Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097 |
[19] |
Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282 |
[20] |
Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]